第十三週項目(2)驗證Kruskal算法

問題及代碼:

/*  
*煙臺大學計算機與控制工程學院  
*作    者:孫啓先  
*完成日期:2016年11月24日  
*問題描述:驗證Kruskal算法
*/    
圖如下:


graph.h

#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED

#define MAXV 100                //最大頂點個數
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定義鄰接矩陣類型
typedef struct
{
    int no;                     //頂點編號
    InfoType info;              //頂點其他信息,在此存放帶權圖權值
} VertexType;                   //頂點類型

typedef struct                  //圖的定義
{
    int edges[MAXV][MAXV];      //鄰接矩陣
    int n,e;                    //頂點數,弧數
    VertexType vexs[MAXV];      //存放頂點信息
} MGraph;                       //圖的鄰接矩陣類型

//以下定義鄰接表類型
typedef struct ANode            //弧的結點結構類型
{
    int adjvex;                 //該弧的終點位置
    struct ANode *nextarc;      //指向下一條弧的指針
    InfoType info;              //該弧的相關信息,這裏用於存放權值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //鄰接表頭結點的類型
{
    Vertex data;                //頂點信息
    int count;                  //存放頂點入度,只在拓撲排序中用
    ArcNode *firstarc;          //指向第一條弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是鄰接表類型

typedef struct
{
    AdjList adjlist;            //鄰接表
    int n,e;                    //圖中頂點數n和邊數e
} ALGraph;                      //圖的鄰接表類型
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通數組構造圖的鄰接矩陣
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通數組構造圖的鄰接表
void MatToList(MGraph g,ALGraph *&G);//將鄰接矩陣g轉換成鄰接表G
void ListToMat(ALGraph *G,MGraph &g);//將鄰接表G轉換成鄰接矩陣g
void DispMat(MGraph g);//輸出鄰接矩陣g
void DispAdj(ALGraph *G);//輸出鄰接表G

#endif // GRAPH_H_INCLUDED
graph.cpp

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用於統計邊數,即矩陣中非0元素個數
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //將Arr看作n×n的二維數組,Arr[i*n+j]即是Arr[i][j],計算存儲位置的功夫在此應用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用於統計邊數,即矩陣中非0元素個數
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //給鄰接表中所有頭節點的指針域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //檢查鄰接矩陣中每個元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一條邊,將Arr看作n×n的二維數組,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //創建一個節點*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //採用頭插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//將鄰接矩陣g轉換成鄰接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //給鄰接表中所有頭節點的指針域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //檢查鄰接矩陣中每個元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一條邊
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //創建一個節點*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //採用頭插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//將鄰接表G轉換成鄰接矩陣g
{
    int i,j;
    ArcNode *p;
    g.n=G->n;   //根據一樓同學“舉報”改的。g.n未賦值,下面的初始化不起作用
    g.e=G->e;
    for (i=0; i<g.n; i++)   //先初始化鄰接矩陣
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根據鄰接表,爲鄰接矩陣賦值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
}

void DispMat(MGraph g)
//輸出鄰接矩陣g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//輸出鄰接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}
main.cpp

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
#define MaxSize 100
typedef struct
{
    int u;     //邊的起始頂點
    int v;     //邊的終止頂點
    int w;     //邊的權值
} Edge;

void InsertSort(Edge E[],int n) //對E[0..n-1]按遞增有序進行直接插入排序
{
    int i,j;
    Edge temp;
    for (i=1; i<n; i++)
    {
        temp=E[i];
        j=i-1;              //從右向左在有序區E[0..i-1]中找E[i]的插入位置
        while (j>=0 && temp.w<E[j].w)
        {
            E[j+1]=E[j];    //將關鍵字大於E[i].w的記錄後移
            j--;
        }
        E[j+1]=temp;        //在j+1處插入E[i]
    }
}

void Kruskal(MGraph g)
{
    int i,j,u1,v1,sn1,sn2,k;
    int vset[MAXV];
    Edge E[MaxSize];    //存放所有邊
    k=0;                //E數組的下標從0開始計
    for (i=0; i<g.n; i++)   //由g產生的邊集E
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]!=0 && g.edges[i][j]!=INF)
            {
                E[k].u=i;
                E[k].v=j;
                E[k].w=g.edges[i][j];
                k++;
            }
    InsertSort(E,g.e);      //採用直接插入排序對E數組按權值遞增排序
    for (i=0; i<g.n; i++)   //初始化輔助數組
        vset[i]=i;
    k=1;    //k表示當前構造生成樹的第幾條邊,初值爲1
    j=0;    //E中邊的下標,初值爲0
    while (k<g.n)       //生成的邊數小於n時循環
    {
        u1=E[j].u;
        v1=E[j].v;      //取一條邊的頭尾頂點
        sn1=vset[u1];
        sn2=vset[v1];   //分別得到兩個頂點所屬的集合編號
        if (sn1!=sn2)   //兩頂點屬於不同的集合
        {
            printf("  (%d,%d):%d\n",u1,v1,E[j].w);
            k++;                     //生成邊數增1
            for (i=0; i<g.n; i++)   //兩個集合統一編號
                if (vset[i]==sn2)   //集合編號爲sn2的改爲sn1
                    vset[i]=sn1;
        }
        j++;               //掃描下一條邊
    }
}

int main()
{
    MGraph g;
    int A[6][6]=
    {
        {0,10,INF,INF,19,21},
        {10,0,5,6,INF,11},
        {INF,5,0,6,INF,INF},
        {INF,6,6,0,18,14},
        {19,INF,INF,18,0,33},
        {21,11,INF,14,33,0}
    };
    ArrayToMat(A[0], 6, g);
    printf("最小生成樹構成:\n");
    Kruskal(g);
    return 0;
}


 

運行結果:


知識點總結:

  Kruskal算法是一種按權值的遞增次序選擇合適的邊來構造最小生成樹的方法。按邊的權值從小到大依次選取,所選取的邊不能形成迴路。
發佈了75 篇原創文章 · 獲贊 0 · 訪問量 1萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章