Java多线程详解

转:

http://www.cnblogs.com/lwbqqyumidi/p/3804883.html

http://www.cnblogs.com/snow-flower/p/6114765.html


  线程对象是可以产生线程的对象。比如在Java平台中Thread对象,Runnable对象。线程,是指正在执行的一个指点令序列。在java平台上是指从一个线程对象的start()开始,运行run方法体中的那一段相对独立的过程。相比于多进程,多线程的优势有:

    (1)进程之间不能共享数据,线程可以;

    (2)系统创建进程需要为该进程重新分配系统资源,故创建线程代价比较小;

    (3)Java语言内置了多线程功能支持,简化了java多线程编程。


一.线程的生命周期及五种基本状态

关于Java中线程的生命周期,首先看一下下面这张较为经典的图:



上图中基本上囊括了Java中多线程各重要知识点。掌握了上图中的各知识点,Java中的多线程也就基本上掌握了。主要包括:

Java线程具有五中基本状态

Java中线程的创建常见有如三种基本形式

1.继承Thread类,重写该类的run()方法。

中基本状态

新建状态(New)当线程对象对创建后,即进入了新建状态,如:Thread t = new MyThread();

就绪状态(Runnable)当调用线程对象的start()方法(t.start();),线程即进入就绪状态。处于就绪状态的线程,只是说明此线程已经做好了准备,随时等待CPU调度执行,并不是说执行了t.start()此线程立即就会执行;

运行状态(Running)当CPU开始调度处于就绪状态的线程时,此时线程才得以真正执行,即进入到运行状态。注:就     绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;

阻塞状态(Blocked)处于运行状态中的线程由于某种原因,暂时放弃对CPU的使用权,停止执行,此时进入阻塞状态,直到其进入到就绪状态,才 有机会再次被CPU调用以进入到运行状态。根据阻塞产生的原因不同,阻塞状态又可以分为三种:

1.等待阻塞:运行状态中的线程执行wait()方法,使本线程进入到等待阻塞状态;

2.同步阻塞 -- 线程在获取synchronized同步锁失败(因为锁被其它线程所占用),它会进入同步阻塞状态;

3.其他阻塞 -- 通过调用线程的sleep()或join()或发出了I/O请求时,线程会进入到阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。

死亡状态(Dead)线程执行完了或者因异常退出了run()方法,该线程结束生命周期。



二. Java多线程的创建及启动

Java中线程的创建常见有如三种基本形式

1.继承Thread类,重写该类的run()方法。

class MyThread extends Thread {
    
    private int i = 0;

    @Override
    public void run() {
        for (i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
        }
    }
}
public class ThreadTest {

    public static void main(String[] args) {
        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
            if (i == 30) {
                Thread myThread1 = new MyThread();     // 创建一个新的线程  myThread1  此线程进入新建状态
                Thread myThread2 = new MyThread();     // 创建一个新的线程 myThread2 此线程进入新建状态
                myThread1.start();                     // 调用start()方法使得线程进入就绪状态
                myThread2.start();                     // 调用start()方法使得线程进入就绪状态
            }
        }
    }
}

如上所示,继承Thread类,通过重写run()方法定义了一个新的线程类MyThread,其中run()方法的方法体代表了线程需要完成的任务,称之为线程执行体。当创建此线程类对象时一个新的线程得以创建,并进入到线程新建状态。通过调用线程对象引用的start()方法,使得该线程进入到就绪状态,此时此线程并不一定会马上得以执行,这取决于CPU调度时机。


2.实现Runnable接口,并重写该接口的run()方法,该run()方法同样是线程执行体,创建Runnable实现类的实例,并以此实例作为Thread类的target来创建Thread对象,该Thread对象才是真正的线程对象。

class MyRunnable implements Runnable {
    private int i = 0;

    @Override
    public void run() {
        for (i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
        }
    }
}

public class ThreadTest {

    public static void main(String[] args) {
        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
            if (i == 30) {
                Runnable myRunnable = new MyRunnable(); // 创建一个Runnable实现类的对象
                Thread thread1 = new Thread(myRunnable); // 将myRunnable作为Thread target创建新的线程
                Thread thread2 = new Thread(myRunnable);
                thread1.start(); // 调用start()方法使得线程进入就绪状态
                thread2.start();
            }
        }
    }
}

相信以上两种创建新线程的方式大家都很熟悉了,那么Thread和Runnable之间到底是什么关系呢?我们首先来看一下下面这个例子。

public class ThreadTest {

    public static void main(String[] args) {
        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
            if (i == 30) {
                Runnable myRunnable = new MyRunnable();
                Thread thread = new MyThread(myRunnable);
                thread.start();
            }
        }
    }
}

class MyRunnable implements Runnable {
    private int i = 0;

    @Override
    public void run() {
        System.out.println("in MyRunnable run");
        for (i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
        }
    }
}

class MyThread extends Thread {

    private int i = 0;
    
    public MyThread(Runnable runnable){
        super(runnable);
    }

    @Override
    public void run() {
        System.out.println("in MyThread run");
        for (i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
        }
    }
}

同样的,与实现Runnable接口创建线程方式相似,不同的地方在于

Thread thread = new MyThread(myRunnable);

那么这种方式可以顺利创建出一个新的线程么?答案是肯定的。至于此时的线程执行体到底是MyRunnable接口中的run()方法还是MyThread类中的run()方法呢?通过输出我们知道线程执行体是MyThread类中的run()方法。其实原因很简单,因为Thread类本身也是实现了Runnable接口,而run()方法最先是在Runnable接口中定义的方法。

public interface Runnable {
   public abstract void run();
     
}
我们看一下Thread类中对Runnable接口中run()方法的实现:

 @Override
    public void run() {
        if (target != null) {
            target.run();
        }
    }

也就是说,当执行到Thread类中的run()方法时,会首先判断target是否存在,存在则执行target中的run()方法,也就是实现了Runnable接口并重写了run()方法的类中的run()方法。但是上述给到的列子中,由于多态的存在,根本就没有执行到Thread类中的run()方法,而是直接先执行了运行时类型即MyThread类中的run()方法。


3.使用Callable和Future接口创建线程。具体是创建Callable接口的实现类,并实现clall()方法。并使用FutureTask类来包装Callable实现类的对象,且以此FutureTask对象作为Thread对象的target来创建线程。

 看着好像有点复杂,直接来看一个例子就清晰了。

public class ThreadTest {

    public static void main(String[] args) {

        Callable<Integer> myCallable = new MyCallable();    // 创建MyCallable对象
        FutureTask<Integer> ft = new FutureTask<Integer>(myCallable); //使用FutureTask来包装MyCallable对象

        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
            if (i == 30) {
                Thread thread = new Thread(ft);   //FutureTask对象作为Thread对象的target创建新的线程
                thread.start();                      //线程进入到就绪状态
            }
        }

        System.out.println("主线程for循环执行完毕..");
        
        try {
            int sum = ft.get();            //取得新创建的新线程中的call()方法返回的结果
            System.out.println("sum = " + sum);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }

    }
}


class MyCallable implements Callable<Integer> {
    private int i = 0;

    // 与run()方法不同的是,call()方法具有返回值
    @Override
    public Integer call() {
        int sum = 0;
        for (; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
            sum += i;
        }
        return sum;
    }

}

首先,我们发现,在实现Callable接口中,此时不再是run()方法了,而是call()方法,此call()方法作为线程执行体,同时还具有返回值!在创建新的线程时,是通过FutureTask来包装MyCallable对象,同时作为了Thread对象的target。那么看下FutureTask类的定义:

public class FutureTask<V> implements RunnableFuture<V> {
    
     //....
    
 }
public interface RunnableFuture<V> extends Runnable, Future<V> { 
     void run();
}

于是,我们发现FutureTask类实际上是同时实现了Runnable和Future接口,由此才使得其具有Future和Runnable双重特性。通过Runnable特性,可以作为Thread对象的target,而Future特性,使得其可以取得新创建线程中的call()方法的返回值。


执行下此程序,我们发现sum = 4950永远都是最后输出的。而“主线程for循环执行完毕..”则很可能是在子线程循环中间输出。由CPU的线程调度机制,我们知道,“主线程for循环执行完毕..”的输出时机是没有任何问题的,那么为什么sum =4950会永远最后输出呢?


原因在于通过ft.get()方法获取子线程call()方法的返回值时,当子线程此方法还未执行完毕,ft.get()方法会一直阻塞,直到call()方法执行完毕才能取到返回值。


上述主要讲解了三种常见的线程创建方式,对于线程的启动而言,都是调用线程对象的start()方法,需要特别注意的是:不能对同一线程对象两次调用start()方法


三、线程管理

Java提供了一些便捷的方法用于会线程状态的控制。具体如下:

1、线程睡眠——sleep
      如果我们需要让当前正在执行的线程暂停一段时间,并进入阻塞状态,则可以通过调用Thread的sleep方法。

注:
   (1)sleep是静态方法,最好不要用Thread的实例对象调用它,因为它睡眠的始终是当前正在运行的线程,而不是调用它的线程对象,它只对正在运行状态的线程对象有效。如下面的例子:

public class Test1 {  
    public static void main(String[] args) throws InterruptedException {  
        System.out.println(Thread.currentThread().getName());  
        MyThread myThread=new MyThread();  
        myThread.start();  
        myThread.sleep(1000);//这里sleep的就是main线程,而非myThread线程  
        Thread.sleep(10);  
        for(int i=0;i<100;i++){  
            System.out.println("main"+i);  
        }  
    }  
}


(2)Java线程调度是Java多线程的核心,只有良好的调度,才能充分发挥系统的性能,提高程序的执行效率。但是不管程序员怎么编写调度,只能最大限度的影响线程执行的次序,而不能做到精准控制。因为使用sleep方法之后,线程是进入阻塞状态的,只有当睡眠的时间结束,才会重新进入到就绪状态,而就绪状态进入到运行状态,是由系统控制的,我们不可能精准的去干涉它,所以如果调用Thread.sleep(1000)使得线程睡眠1秒,可能结果会大于1秒。


2、线程让步——yield

      yield()方法和sleep()方法有点相似,它也是Thread类提供的一个静态的方法,它也可以让当前正在执行的线程暂停,让出cpu资源给其他的线程。但是和sleep()方法不同的是,它不会进入到阻塞状态,而是进入到就绪状态。yield()方法只是让当前线程暂停一下,重新进入就绪的线程池中,让系统的线程调度器重新调度器重新调度一次,完全可能出现这样的情况:当某个线程调用yield()方法之后,线程调度器又将其调度出来重新进入到运行状态执行。


实际上,当某个线程调用了yield()方法暂停之后,优先级与当前线程相同,或者优先级比当前线程更高的就绪状态的线程更有可能获得执行的机会,当然,只是有可能,因为我们不可能精确的干涉cpu调度线程。用法如下:

public class Test1 {  
    public static void main(String[] args) throws InterruptedException {  
        new MyThread("低级", 1).start();  
        new MyThread("中级", 5).start();  
        new MyThread("高级", 10).start();  
    }  
}  
  
class MyThread extends Thread {  
    public MyThread(String name, int pro) {  
        super(name);// 设置线程的名称  
        this.setPriority(pro);// 设置优先级  
    }  
  
    @Override  
    public void run() {  
        for (int i = 0; i < 30; i++) {  
            System.out.println(this.getName() + "线程第" + i + "次执行!");  
            if (i % 5 == 0)  
                Thread.yield();  
        }  
    }  
}

:关于sleep()方法和yield()方的区别如下:

①、sleep方法暂停当前线程后,会进入阻塞状态,只有当睡眠时间到了,才会转入就绪状态。而yield方法调用后 ,是直接进入就绪状态,所以有可能刚进入就绪状态,又被调度到运行状态。
②、sleep方法声明抛出了InterruptedException,所以调用sleep方法的时候要捕获该异常,或者显示声明抛出该异常。而yield方法则没有声明抛出任务异常。

③、sleep方法比yield方法有更好的可移植性,通常不要依靠yield方法来控制并发线程的执行。

3、线程合并——join
线程的合并的含义就是将几个并行线程的线程合并为一个单线程执行,应用场景是当一个线程必须等待另一个线程执行完毕才能执行时,Thread类提供了join方法来完成这个功能,注意,它不是静态方法。
从上面的方法的列表可以看到,它有3个重载的方法:

void join()      
     当前线程等该加入该线程后面,等待该线程终止。    
void join(long millis)  
     当前线程等待该线程终止的时间最长为 millis 毫秒。 如果在millis时间内,该线程没有执行完,那么当前线程进入就绪状态,重新等待cpu调度  
void join(long millis,int nanos)   
     等待该线程终止的时间最长为 millis 毫秒 + nanos 纳秒。如果在millis时间内,该线程没有执行完,那么当前线程进入就绪状态,重新等待cpu调度 


public class TestJoin {
 
  public static void main(String[] args) {
   
    MyThread2 t1 = new MyThread2("TestJoin");
    t1.start();
    try {
      t1.join();  //join()合并线程,子线程运行完之后,主线程才开始执行
     }catch (InterruptedException e) {  }
      
     for(int i=0 ; i <10; i++)
              System.out.println("I am Main Thread");
   }
 }
 
 class MyThread2 extends Thread {
  
    MyThread2(String s) {
     super(s);
     }
     
  public void run() {
    for(int i = 1; i <= 10; i++) {
     System.out.println("I am "+getName());
     try {
      sleep(1000); //暂停,每一秒输出一次
      }catch (InterruptedException e) {
      return;
     }
     }
   }
  }



4、设置线程的优先级


     每个线程执行时都有一个优先级的属性,优先级高的线程可以获得较多的执行机会,而优先级低的线程则获得较少的执行机会。与线程休眠类似,线程的优先级仍然无法保障线程的执行次序。只不过,优先级高的线程获取CPU资源的概率较大,优先级低的也并非没机会执行。


每个线程默认的优先级都与创建它的父线程具有相同的优先级,在默认情况下,main线程具有普通优先级。


注:Thread类提供了setPriority(int newPriority)和getPriority()方法来设置和返回一个指定线程的优先级,其中setPriority方法的参数是一个整数,范围是1~·0之间,也可以使用Thread类提供的三个静态常量:

MAX_PRIORITY   =10

MIN_PRIORITY   =1

NORM_PRIORITY   =5
public class Test1 {  
        public static void main(String[] args) throws InterruptedException {  
            new MyThread("高级", 10).start();  
            new MyThread("低级", 1).start();  
        }  
    }  
      
    class MyThread extends Thread {  
        public MyThread(String name,int pro) {  
            super(name);//设置线程的名称  
            setPriority(pro);//设置线程的优先级  
        }  
        @Override  
        public void run() {  
            for (int i = 0; i < 100; i++) {  
                System.out.println(this.getName() + "线程第" + i + "次执行!");  
            }  
        }  
    }

注:虽然Java提供了10个优先级别,但这些优先级别需要操作系统的支持。不同的操作系统的优先级并不相同,而且也不能很好的和Java的10个优先级别对应。所以我们应该使用MAX_PRIORITY、MIN_PRIORITY和NORM_PRIORITY三个静态常量来设定优先级,这样才能保证程序最好的可移植性。



5、后台(守护)线程
http://blog.csdn.net/u014695188/article/details/62881023

     守护线程使用的情况较少,但并非无用,举例来说,JVM的垃圾回收、内存管理等线程都是守护线程。还有就是在做数据库应用时候,使用的数据库连接池,连接池本身也包含着很多后台线程,监控连接个数、超时时间、状态等等。调用线程对象的方法setDaemon(true),则可以将其设置为守护线程。守护线程的用途为:
     • 守护线程通常用于执行一些后台作业,例如在你的应用程序运行时播放背景音乐,在文字编辑器里做自动语法检查、自动保存等功能。


     • Java的垃圾回收也是一个守护线程。守护线的好处就是你不需要关心它的结束问题。例如你在你的应用程序运行的时候希望播放背景音乐,如果将这个播放背景音乐的线程设定为非守护线程,那么在用户请求退出的时候,不仅要退出主线程,还要通知播放背景音乐的线程退出;如果设定为守护线程则不需要了。


setDaemon方法的详细说明:

public final void setDaemon(boolean on)        将该线程标记为守护线程或用户线程。当正在运行的线程都是守护线程时,Java 虚拟机退出。    
         该方法必须在启动线程前调用。 该方法首先调用该线程的 checkAccess 方法,且不带任何参数。这可能抛出 SecurityException(在当前线程中)。   
  参数:
     on - 如果为 true,则将该线程标记为守护线程。    
  抛出:    
    IllegalThreadStateException - 如果该线程处于活动状态。    
    SecurityException - 如果当前线程无法修改该线程。
注:JRE判断程序是否执行结束的标准是所有的前台执线程行完毕了,而不管后台线程的状态,因此,在使用后台线程时候一定要注意这个问题。


6、正确结束线程
Thread.stop()、Thread.suspend、Thread.resume、Runtime.runFinalizersOnExit这些终止线程运行的方法已经被废弃了,使用它们是极端不安全的!想要安全有效的结束一个线程,可以使用下面的方法:

    • 正常执行完run方法,然后结束掉;

    • 控制循环条件和判断条件的标识符来结束掉线程。

class MyThread extends Thread {  
    int i=0;  
    boolean next=true;  
    @Override  
    public void run() {  
        while (next) {  
            if(i==10)  
                next=false;  
            i++;  
            System.out.println(i);  
        }  
    }  
}

四、线程同步

     java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查),将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用,从而保证了该变量的唯一性和准确性。

1、同步方法     

      即有synchronized关键字修饰的方法。由于java的每个对象都有一个内置锁,当用此关键字修饰方法时,内置锁会保护整个方法。在调用该方法前,需要获得内置锁,否则就处于阻塞状态。

public synchronized void save(){}

注: synchronized关键字也可以修饰静态方法,此时如果调用该静态方法,将会锁住整个类


 2、同步代码块
    

     即有synchronized关键字修饰的语句块。被该关键字修饰的语句块会自动被加上内置锁,从而实现同步

public class Bank {  
     
        private int count =0;//账户余额  
     
        //存钱  
        public   void addMoney(int money){  
     
            synchronized (this) {  
                count +=money;  
            }  
            System.out.println(System.currentTimeMillis()+"存进:"+money);  
        }  
     
        //取钱  
        public   void subMoney(int money){  
     
            synchronized (this) {  
                if(count-money < 0){  
                    System.out.println("余额不足");  
                    return;  
                }  
                count -=money;  
            }  
            System.out.println(+System.currentTimeMillis()+"取出:"+money);  
        }  
     
        //查询  
        public void lookMoney(){  
            System.out.println("账户余额:"+count);  
        } 
    }

注:同步是一种高开销的操作,因此应该尽量减少同步的内容。通常没有必要同步整个方法,使用synchronized代码块同步关键代码即可。


 3、使用特殊域变量(volatile)实现线程同步    
 


   • volatile关键字为域变量的访问提供了一种免锁机制;

   • 使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新;

   • 因此每次使用该域就要重新计算,而不是使用寄存器中的值;

   • volatile不会提供任何原子操作,它也不能用来修饰final类型的变量。

public class SynchronizedThread {
 
        class Bank {
 
            private volatile int account = 100;
 
            public int getAccount() {
                return account;
            }
 
            /**
             * 用同步方法实现
             * 
             * @param money
             */
            public synchronized void save(int money) {
                account += money;
            }
 
            /**
             * 用同步代码块实现
             * 
             * @param money
             */
            public void save1(int money) {
                synchronized (this) {
                    account += money;
                }
            }
        }
 
        class NewThread implements Runnable {
            private Bank bank;
 
            public NewThread(Bank bank) {
                this.bank = bank;
            }
 
            @Override
            public void run() {
                for (int i = 0; i < 10; i++) {
                    // bank.save1(10);
                    bank.save(10);
                    System.out.println(i + "账户余额为:" +bank.getAccount());
                }
            }
 
        }
 
        /**
         * 建立线程,调用内部类
         */
        public void useThread() {
            Bank bank = new Bank();
            NewThread new_thread = new NewThread(bank);
            System.out.println("线程1");
            Thread thread1 = new Thread(new_thread);
            thread1.start();
            System.out.println("线程2");
            Thread thread2 = new Thread(new_thread);
            thread2.start();
        }
 
        public static void main(String[] args) {
            SynchronizedThread st = new SynchronizedThread();
            st.useThread();
        }

注:多线程中的非同步问题主要出现在对域的读写上,如果让域自身避免这个问题,则就不需要修改操作该域的方法。用final域,有锁保护的域和volatile域可以避免非同步的问题。


4、使用重入锁(Lock)实现线程同步


      在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。ReentrantLock类是可重入、互斥、实现了Lock接口的锁,它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力。ReenreantLock类的常用方法有:

 ReentrantLock() : 创建一个ReentrantLock实例         
 lock() : 获得锁        
 unlock() : 释放锁

注:ReentrantLock()还有一个可以创建公平锁的构造方法,但由于能大幅度降低程序运行效率,不推荐使用

//只给出要修改的代码,其余代码与上同
        class Bank {
            
            private int account = 100;
            //需要声明这个锁
            private Lock lock = new ReentrantLock();
            public int getAccount() {
                return account;
            }
            //这里不再需要synchronized 
            public void save(int money) {
                lock.lock();
                try{
                    account += money;
                }finally{
                    lock.unlock();
                }
                
            }
        }

五、线程通信



1、借助于Object类的wait()、notify()和notifyAll()实现通信


     线程执行wait()后,就放弃了运行资格,处于冻结状态;


     线程运行时,内存中会建立一个线程池,冻结状态的线程都存在于线程池中,notify()执行时唤醒的也是线程池中的线程,线程池中有多个线程时唤醒第一个被冻结的线程。
      notifyall(), 唤醒线程池中所有线程。
注: (1) wait(), notify(),notifyall()都用在同步里面,因为这3个函数是对持有锁的线程进行操作,而只有同步才有锁,所以要使用在同步中;
       (2) wait(),notify(),notifyall(),  在使用时必须标识它们所操作的线程持有的锁,因为等待和唤醒必须是同一锁下的线程;而锁可以是任意对象,所以这3个方法都是Object类中的方法。


单个消费者生产者例子如下:

class Resource{  //生产者和消费者都要操作的资源  
    private String name;  
    private int count=1;  
    private boolean flag=false;  
    public synchronized void set(String name){  
        if(flag)  
            try{wait();}catch(Exception e){}  
        this.name=name+"---"+count++;  
        System.out.println(Thread.currentThread().getName()+"...生产者..."+this.name);  
        flag=true;  
        this.notify();  
    }  
    public synchronized void out(){  
        if(!flag)  
            try{wait();}catch(Exception e){}  
        System.out.println(Thread.currentThread().getName()+"...消费者..."+this.name);  
        flag=false;  
        this.notify();  
    }  
}  
class Producer implements Runnable{  
    private Resource res;  
    Producer(Resource res){  
        this.res=res;  
    }  
    public void run(){  
        while(true){  
            res.set("商品");  
        }  
    }  
}  
class Consumer implements Runnable{  
    private Resource res;  
    Consumer(Resource res){  
        this.res=res;  
    }  
    public void run(){  
        while(true){  
            res.out();  
        }  
    }  
}  
public class ProducerConsumerDemo{  
    public static void main(String[] args){  
        Resource r=new Resource();  
        Producer pro=new Producer(r);  
        Consumer con=new Consumer(r);  
        Thread t1=new Thread(pro);  
        Thread t2=new Thread(con);  
        t1.start();  
        t2.start();  
    }  
}//运行结果正常,生产者生产一个商品,紧接着消费者消费一个商品。

但是如果有多个生产者和多个消费者,上面的代码是有问题,比如2个生产者,2个消费者,运行结果就可能出现生产的1个商品生产了一次而被消费了2次,或者连续生产2个商品而只有1个被消费,这是因为此时共有4个线程在操作Resource对象r,  而notify()唤醒的是线程池中第1个wait()的线程,所以生产者执行notify()时,唤醒的线程有可能是另1个生产者线程,这个生产者线程从wait()中醒来后不会再判断flag,而是直接向下运行打印出一个新的商品,这样就出现了连续生产2个商品。
为了避免这种情况,修改代码如下
class Resource{  
        private String name;  
        private int count=1;  
        private boolean flag=false;  
        public synchronized void set(String name){  
            while(flag) /*原先是if,现在改成while,这样生产者线程从冻结状态醒来时,还会再判断flag.*/  
                try{wait();}catch(Exception e){}  
            this.name=name+"---"+count++;  
            System.out.println(Thread.currentThread().getName()+"...生产者..."+this.name);  
            flag=true;  
            this.notifyAll();/*原先是notity(), 现在改成notifyAll(),这样生产者线程生产完一个商品后可以将等待中的消费者线程唤醒,否则只将上面改成while后,可能出现所有生产者和消费者都在wait()的情况。*/  
        }  
        public synchronized void out(){  
            while(!flag) /*原先是if,现在改成while,这样消费者线程从冻结状态醒来时,还会再判断flag.*/  
                try{wait();}catch(Exception e){}  
            System.out.println(Thread.currentThread().getName()+"...消费者..."+this.name);  
            flag=false;  
            this.notifyAll(); /*原先是notity(), 现在改成notifyAll(),这样消费者线程消费完一个商品后可以将等待中的生产者线程唤醒,否则只将上面改成while后,可能出现所有生产者和消费者都在wait()的情况。*/  
        }  
    }  
    public class ProducerConsumerDemo{  
        public static void main(String[] args){  
            Resource r=new Resource();  
            Producer pro=new Producer(r);  
            Consumer con=new Consumer(r);  
            Thread t1=new Thread(pro);  
            Thread t2=new Thread(con);  
            Thread t3=new Thread(pro);  
            Thread t4=new Thread(con);  
            t1.start();  
            t2.start();  
            t3.start();  
            t4.start();  
        }  
    }

2、使用Condition控制线程通信



      jdk1.5中,提供了多线程的升级解决方案为:


     (1)将同步synchronized替换为显式的Lock操作;

     (2)将Object类中的wait(), notify(),notifyAll()替换成了Condition对象,该对象可以通过Lock锁对象获取;

     (3)一个Lock对象上可以绑定多个Condition对象,这样实现了本方线程只唤醒对方线程,而jdk1.5之前,一个同步只能有一个锁,不同的同步只能用锁来区分,且锁嵌套时容易死锁。


class Resource{  
        private String name;  
        private int count=1;  
        private boolean flag=false;  
        private Lock lock = new ReentrantLock();/*Lock是一个接口,ReentrantLock是该接口的一个直接子类。*/  
        private Condition condition_pro=lock.newCondition(); /*创建代表生产者方面的Condition对象*/  
        private Condition condition_con=lock.newCondition(); /*使用同一个锁,创建代表消费者方面的Condition对象*/  
          
        public void set(String name){  
            lock.lock();//锁住此语句与lock.unlock()之间的代码  
            try{  
                while(flag)  
                    condition_pro.await(); //生产者线程在conndition_pro对象上等待  
                this.name=name+"---"+count++;  
                System.out.println(Thread.currentThread().getName()+"...生产者..."+this.name);  
                flag=true;  
                 condition_con.signalAll();  
            }  
            finally{  
                lock.unlock(); //unlock()要放在finally块中。  
            }  
        }  
        public void out(){  
            lock.lock(); //锁住此语句与lock.unlock()之间的代码  
            try{  
                while(!flag)  
                    condition_con.await(); //消费者线程在conndition_con对象上等待  
            System.out.println(Thread.currentThread().getName()+"...消费者..."+this.name);  
            flag=false;  
            condition_pro.signqlAll(); /*唤醒所有在condition_pro对象下等待的线程,也就是唤醒所有生产者线程*/  
            }  
            finally{  
                lock.unlock();  
            }  
        }  
    }


3、使用阻塞队列(BlockingQueue)控制线程通信



       BlockingQueue是一个接口,也是Queue的子接口。BlockingQueue具有一个特征:当生产者线程试图向BlockingQueue中放入元素时,如果该队列已满,则线程被阻塞;但消费者线程试图从BlockingQueue中取出元素时,如果队列已空,则该线程阻塞。程序的两个线程通过交替向BlockingQueue中放入元素、取出元素,即可很好地控制线程的通信。


BlockingQueue提供如下两个支持阻塞的方法


  (1)put(E e):尝试把Eu元素放如BlockingQueue中,如果该队列的元素已满,则阻塞该线程。


  (2)take():尝试从BlockingQueue的头部取出元素,如果该队列的元素已空,则阻塞该线程。


BlockingQueue继承了Queue接口,当然也可以使用Queue接口中的方法,这些方法归纳起来可以分为如下三组:


  (1)在队列尾部插入元素,包括add(E e)、offer(E e)、put(E e)方法,当该队列已满时,这三个方法分别会抛出异常、返回false、阻塞队列。


  (2)在队列头部删除并返回删除的元素。包括remove()、poll()、和take()方法,当该队列已空时,这三个方法分别会抛出异常、返回false、阻塞队列。


  (3)在队列头部取出但不删除元素。包括element()和peek()方法,当队列已空时,这两个方法分别抛出异常、返回false。


BlockingQueue接口包含如下5个实现类:
ArrayBlockingQueue :基于数组实现的BlockingQueue队列。

LinkedBlockingQueue:基于链表实现的BlockingQueue队列。

PriorityBlockingQueue:它并不是保准的阻塞队列,该队列调用remove()、poll()、take()等方法提取出元素时,并不是取出队列中存在时间最长的元素,而是队列中最小的元素。
                       它判断元素的大小即可根据元素(实现Comparable接口)的本身大小来自然排序,也可使用Comparator进行定制排序。

SynchronousQueue:同步队列。对该队列的存、取操作必须交替进行。

DelayQueue:它是一个特殊的BlockingQueue,底层基于PriorityBlockingQueue实现,不过,DelayQueue要求集合元素都实现Delay接口(该接口里只有一个long getDelay()方法),
            DelayQueue根据集合元素的getDalay()方法的返回值进行排序。

copy的一个示例:

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
public class BlockingQueueTest{
    public static void main(String[] args)throws Exception{
        //创建一个容量为1的BlockingQueue
        
        BlockingQueue<String> b=new ArrayBlockingQueue<>(1);
        //启动3个生产者线程
        new Producer(b).start();
        new Producer(b).start();
        new Producer(b).start();
        //启动一个消费者线程
        new Consumer(b).start();
        
    }
}
class Producer extends Thread{
    private BlockingQueue<String> b;
    
    public Producer(BlockingQueue<String> b){
        this.b=b;
        
    }
    public synchronized void run(){
        String [] str=new String[]{
            "java",
            "struts",
            "Spring"
        };
        for(int i=0;i<9999999;i++){
            System.out.println(getName()+"生产者准备生产集合元素!");
            try{
            
                b.put(str[i%3]);
                sleep(1000);
                //尝试放入元素,如果队列已满,则线程被阻塞
                
            }catch(Exception e){System.out.println(e);}
            System.out.println(getName()+"生产完成:"+b);
        }
        
    }
}
class Consumer extends Thread{
    private BlockingQueue<String> b;
    public Consumer(BlockingQueue<String> b){
        this.b=b;
    }
    public  synchronized  void run(){
    
        while(true){
            System.out.println(getName()+"消费者准备消费集合元素!");
            try{
                sleep(1000);
                //尝试取出元素,如果队列已空,则线程被阻塞
                b.take();
            }catch(Exception e){System.out.println(e);}
            System.out.println(getName()+"消费完:"+b);
        }
    
    }
}




发布了0 篇原创文章 · 获赞 126 · 访问量 92万+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章