Java中的鎖分類

在讀很多併發文章中,會提及各種各樣鎖如公平鎖,樂觀鎖等等,這篇文章介紹各種鎖的分類。介紹的內容如下:

  • 公平鎖/非公平鎖

  • 可重入鎖

  • 獨享鎖/共享鎖

  • 互斥鎖/讀寫鎖

  • 樂觀鎖/悲觀鎖

  • 分段鎖

  • 偏向鎖/輕量級鎖/重量級鎖

  • 自旋鎖

上面是很多鎖的名詞,這些分類並不是全是指鎖的狀態,有的指鎖的特性,有的指鎖的設計,下面總結的內容是對每個鎖的名詞進行一定的解釋。

 

公平鎖/非公平鎖

公平鎖是指多個線程按照申請鎖的順序來獲取鎖。

非公平鎖是指多個線程獲取鎖的順序並不是按照申請鎖的順序,有可能後申請的線程比先申請的線程優先獲取鎖。有可能,會造成優先級反轉或者飢餓現象。

對於Java ReentrantLock而言,通過構造函數指定該鎖是否是公平鎖,默認是非公平鎖。非公平鎖的優點在於吞吐量比公平鎖大。

對於Synchronized而言,也是一種非公平鎖。由於其並不像ReentrantLock是通過AQS(AbstractQueuedSynchronizer)的來實現線程調度,所以並沒有任何辦法使其變成公平鎖。

 

可重入鎖

可重入鎖又名遞歸鎖,是指在同一個線程在外層方法獲取鎖的時候,在進入內層方法會自動獲取鎖。說的有點抽象,下面會有一個代碼的示例。

對於Java ReentrantLock而言, 他的名字就可以看出是一個可重入鎖,其名字是Re entrant Lock重新進入鎖。

對於Synchronized而言,也是一個可重入鎖。可重入鎖的一個好處是可一定程度避免死鎖

synchronized void setA() throws Exception {    
    Thread.sleep(1000);    
    setB();
}
synchronized void setB() throws Exception {    
    Thread.sleep(1000);
}

上面的代碼就是一個可重入鎖的一個特點,如果不是可重入鎖的話,setB可能不會被當前線程執行,可能造成死鎖。

 

獨享鎖/共享鎖

  • 獨享鎖是指該鎖一次只能被一個線程所持有。

  • 共享鎖是指該鎖可被多個線程所持有。

對於Java ReentrantLock而言,其是獨享鎖。但是對於Lock的另一個實現類ReadWriteLock,其讀鎖是共享鎖,其寫鎖是獨享鎖。

讀鎖的共享鎖可保證併發讀是非常高效的,讀寫,寫讀 ,寫寫的過程是互斥的。

獨享鎖與共享鎖也是通過AQS來實現的,通過實現不同的方法,來實現獨享或者共享。

對於Synchronized而言,當然是獨享鎖。

 

互斥鎖/讀寫鎖

上面講的獨享鎖/共享鎖就是一種廣義的說法,互斥鎖/讀寫鎖就是具體的實現。

  • 互斥鎖在Java中的具體實現就是ReentrantLock

  • 讀寫鎖在Java中的具體實現就是ReadWriteLock

 

樂觀鎖/悲觀鎖

樂觀鎖與悲觀鎖不是指具體的什麼類型的鎖,而是指看待併發同步的角度。

  • 悲觀鎖認爲對於同一個數據的併發操作,一定是會發生修改的,哪怕沒有修改,也會認爲修改。因此對於同一個數據的併發操作,悲觀鎖採取加鎖的形式。悲觀的認爲,不加鎖的併發操作一定會出問題。

  • 樂觀鎖則認爲對於同一個數據的併發操作,是不會發生修改的。在更新數據的時候,會採用嘗試更新,不斷重新的方式更新數據。樂觀的認爲,不加鎖的併發操作是沒有事情的。

從上面的描述我們可以看出,悲觀鎖適合寫操作非常多的場景,樂觀鎖適合讀操作非常多的場景,不加鎖會帶來大量的性能提升。

悲觀鎖在Java中的使用,就是利用各種鎖。

樂觀鎖在Java中的使用,是無鎖編程,常常採用的是CAS算法,典型的例子就是原子類,通過CAS自旋實現原子操作的更新。

 

分段鎖

分段鎖其實是一種鎖的設計,並不是具體的一種鎖,對於ConcurrentHashMap而言,其併發的實現就是通過分段鎖的形式來實現高效的併發操作。

我們以ConcurrentHashMap來說一下分段鎖的含義以及設計思想,ConcurrentHashMap中的分段鎖稱爲Segment,它即類似於HashMap(JDK7與JDK8中HashMap的實現)的結構,即內部擁有一個Entry數組,數組中的每個元素又是一個鏈表;同時又是一個ReentrantLock(Segment繼承了ReentrantLock)。

當需要put元素的時候,並不是對整個hashmap進行加鎖,而是先通過hashcode來知道他要放在哪一個分段中,然後對這個分段進行加鎖,所以當多線程put的時候,只要不是放在一個分段中,就實現了真正的並行的插入。

但是,在統計size的時候,可就是獲取hashmap全局信息的時候,就需要獲取所有的分段鎖才能統計。

分段鎖的設計目的:是細化鎖的粒度,當操作不需要更新整個數組的時候,就僅僅針對數組中的一項進行加鎖操作。

 

偏向鎖/輕量級鎖/重量級鎖

這三種鎖是指鎖的狀態,並且是針對Synchronized。在Java 5通過引入鎖升級的機制來實現高效Synchronized。這三種鎖的狀態是通過對象監視器在對象頭中的字段來表明的。

  • 偏向鎖: 是指一段同步代碼一直被一個線程所訪問,那麼該線程會自動獲取鎖。降低獲取鎖的代價。

  • 輕量級鎖: 是指當鎖是偏向鎖的時候,被另一個線程所訪問,偏向鎖就會升級爲輕量級鎖,其他線程會通過自旋的形式嘗試獲取鎖,不會阻塞,提高性能。

  • 重量級鎖: 是指當鎖爲輕量級鎖的時候,另一個線程雖然是自旋,但自旋不會一直持續下去,當自旋一定次數的時候,還沒有獲取到鎖,就會進入阻塞,該鎖膨脹爲重量級鎖。重量級鎖會讓其他申請的線程進入阻塞,性能降低。

 

自旋鎖

在Java中,自旋鎖是指嘗試獲取鎖的線程不會立即阻塞,而是採用循環的方式去嘗試獲取鎖,這樣的好處是減少線程上下文切換的消耗,缺點是循環會消耗CPU。典型的自旋鎖實現的例子,可以參考自旋鎖的實現

 

偏向鎖/輕量級鎖/重量級鎖的區別與膨脹

在Java SE 1.6中,鎖一共有4種狀態,級別從低到高依次是:無鎖狀態、偏向鎖狀態、輕量級鎖狀態、重量級鎖狀態。這幾個狀態會隨着競爭情況逐漸升級。鎖可以升級但不能降級,意味着偏向鎖升級爲輕量級鎖後不能降級成偏向鎖。這種鎖升級卻不能降級的策略,目的是爲了提高獲得鎖和釋放鎖的效率。

偏向鎖

Hotspot 的作者經過以往的研究發現大多數情況下鎖不僅不存在多線程競爭,而且總是由同一線程多次獲得,爲了讓線程獲得鎖的代價更低而引入了偏向鎖。當一個線程訪問同步塊並獲取鎖時,會在對象頭和棧幀中的鎖記錄裏存儲鎖偏向的線程 ID,以後該線程在進入和退出同步塊時不需要花費CAS操作來加鎖和解鎖,而只需簡單的測試一下對象頭的Mark Word裏是否存儲着指向當前線程的偏向鎖,如果測試成功,表示線程已經獲得了鎖,如果測試失敗,則需要再測試下 Mark Word中偏向鎖的標識是否設置成 1(表示當前是偏向鎖),如果沒有設置,則使用 CAS 競爭鎖,如果設置了,則嘗試使用 CAS 將對象頭的偏向鎖指向當前線程。

偏向鎖的撤銷: 偏向鎖使用了一種等到競爭出現才釋放鎖的機制,所以當其他線程嘗試競爭偏向鎖時,持有偏向鎖的線程纔會釋放鎖。偏向鎖的撤銷,需要等待全局安全點(在這個時間點上沒有字節碼正在執行),它會首先暫停擁有偏向鎖的線程,然後檢查持有偏向鎖的線程是否活着,如果線程不處於活動狀態,則將對象頭設置成無鎖狀態,如果線程仍然活着,擁有偏向鎖的棧會被執行,遍歷偏向對象的鎖記錄,棧中的鎖記錄和對象頭的Mark Word要麼重新偏向於其他線程,要麼恢復到無鎖或者標記對象不適合作爲偏向鎖,最後喚醒暫停的線程。

輕量級鎖

輕量級鎖加鎖: 線程在執行同步塊之前, JVM會先在當前線程的棧楨中創建用於存儲鎖記錄的空間,並將對象頭中的Mark Word複製到鎖記錄中,官方稱爲Displaced Mark Word。然後線程嘗試使用 CAS 將對象頭中的Mark Word替換爲指向鎖記錄的指針。如果成功,當前線程獲得鎖,如果失敗,表示其他線程競爭鎖,當前線程便嘗試使用自旋來獲取鎖。如果有兩條以上的線程爭用同一個鎖,那輕量級鎖就不再有效,要膨脹爲重量級鎖,鎖標誌的狀態值變爲”10”,Mark Word中存儲的就是指向重量級(互斥量)的指針。

輕量級鎖解鎖: 輕量級解鎖時,會使用原子的 CAS 操作來將Displaced Mark Word替換回到對象頭,如果成功,則表示沒有競爭發生。如果失敗,表示當前鎖存在競爭,鎖就會膨脹成重量級鎖。

偏向所鎖,輕量級鎖都是樂觀鎖,重量級鎖是悲觀鎖。

一個對象剛開始實例化的時候,沒有任何線程來訪問它的時候。它是可偏向的,意味着,它現在認爲只可能有一個線程來訪問它,所以當第一個線程來訪問它的時候,它會偏向這個線程,此時,對象持有偏向鎖。偏向第一個線程,這個線程在修改對象頭成爲偏向鎖的時候使用CAS操作,並將對象頭中的ThreadID改成自己的ID,之後再次訪問這個對象時,只需要對比ID,不需要再使用CAS在進行操作。

一旦有第二個線程訪問這個對象,因爲偏向鎖不會主動釋放,所以第二個線程可以看到對象時偏向狀態,這時表明在這個對象上已經存在競爭了,檢查原來持有該對象鎖的線程是否依然存活,如果掛了,則可以將對象變爲無鎖狀態,然後重新偏向新的線程,如果原來的線程依然存活,則馬上執行那個線程的操作棧,檢查該對象的使用情況,如果仍然需要持有偏向鎖,則偏向鎖升級爲輕量級鎖,(偏向鎖就是這個時候升級爲輕量級鎖的)。如果不存在使用了,則可以將對象回覆成無鎖狀態,然後重新偏向。

輕量級鎖認爲競爭存在,但是競爭的程度很輕,一般兩個線程對於同一個鎖的操作都會錯開,或者說稍微等待一下(自旋),另一個線程就會釋放鎖。 但是當自旋超過一定的次數,或者一個線程在持有鎖,一個在自旋,又有第三個來訪時,輕量級鎖膨脹爲重量級鎖,重量級鎖使除了擁有鎖的線程以外的線程都阻塞,防止CPU空轉。

 

偏向鎖/輕量級鎖/重量級鎖的優缺點對比

優點 缺點 適用場景
偏向鎖 加鎖和解鎖不需要額外的消耗,和執行非同步方法相比僅存在納秒級的差距 如果線程間存在鎖競爭,會帶來額外的鎖撤銷的消耗 適用於只有一個線程訪問同步塊場景
輕量級鎖 競爭的線程不會阻塞,提高了程序的響應速度 如果始終得不到鎖競爭的線程,使用自旋會消耗CPU 追求響應時間 同步塊執行速度非常快
重量級鎖 線程競爭不使用自旋,不會消耗CPU 線程阻塞,響應時間緩慢 追求吞吐量 同步塊執行速度較長
發佈了159 篇原創文章 · 獲贊 28 · 訪問量 6萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章