sha2算法介绍和源码实现

1. SHA256简介

SHA256是SHA-2下细分出的一种算法

SHA-2,名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准,由美国国家安全局研发,属于SHA算法之一,是SHA-1的后继者。

SHA-2下又可再分为六个不同的算法标准

包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。

这些变体除了生成摘要的长度 、循环运行的次数等一些微小差异外,算法的基本结构是一致的。

回到SHA256上,说白了,它就是一个哈希函数。

哈希函数,又称散列算法,是一种从任何一种数据中创建小的数字“指纹”的方法。散列函数把消息或数据压缩成摘要,使得数据量变小,将数据的格式固定下来。该函数将数据打乱混合,重新创建一个叫做散列值(或哈希值)的指纹。散列值通常用一个短的随机字母和数字组成的字符串来代表。

对于任意长度的消息,SHA256都会产生一个256bit长的哈希值,称作消息摘要。

这个摘要相当于是个长度为32个字节的数组,通常用一个长度为64的十六进制字符串来表示

来看一个例子:

干他100天成为区块链程序员,红军大叔带领着我们,fighting!

这句话,经过哈希函数SHA256后得到的哈希值为:

A7FCFC6B5269BDCCE571798D618EA219A68B96CB87A0E21080C2E758D23E4CE9

 

2. SHA256原理详解

为了更好的理解SHA256的原理,这里首先将算法中可以单独抽出的模块,包括常量的初始化、信息预处理、使用到的逻辑运算分别进行介绍,甩开这些理解上的障碍后,一起来探索SHA256算法的主体部分,即消息摘要是如何计算的。

2.1 常量初始化

SHA256算法中用到了8个哈希初值以及64个哈希常量

其中,SHA256算法的8个哈希初值如下:

h0 := 0x6a09e667
h1 := 0xbb67ae85
h2 := 0x3c6ef372
h3 := 0xa54ff53a
h4 := 0x510e527f
h5 := 0x9b05688c
h6 := 0x1f83d9ab
h7 := 0x5be0cd19

这些初值是对自然数中前8个质数(2,3,5,7,11,13,17,19)的平方根的小数部分取前32bit而来

在SHA256算法中,用到的64个常量如下:

428a2f98 71374491 b5c0fbcf e9b5dba5
3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3
72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc
2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7
c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13
650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3
d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5
391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208
90befffa a4506ceb bef9a3f7 c67178f2

和8个哈希初值类似,这些常量是对自然数中前64个质数(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97…)的立方根的小数部分取前32bit而来。

 

2.2 信息预处理(pre-processing)

SHA256算法中的预处理就是在想要Hash的消息后面补充需要的信息,使整个消息满足指定的结构。

信息的预处理分为两个步骤:附加填充比特和附加长度

STEP1:附加填充比特

在报文末尾进行填充,使报文长度在对512取模以后的余数是448

填充是这样进行的:先补第一个比特为1,然后都补0,直到长度满足对512取模后余数是448。

需要注意的是,信息必须进行填充,也就是说,即使长度已经满足对512取模后余数是448,补位也必须要进行,这时要填充512个比特。

因此,填充是至少补一位,最多补512位。

例:以信息“abc”为例显示补位的过程。

a,b,c对应的ASCII码分别是97,98,99

于是原始信息的二进制编码为:01100001 01100010 01100011

补位第一步,首先补一个“1” : 0110000101100010 01100011 1

补位第二步,补423个“0”:01100001 01100010 01100011 10000000 00000000 … 00000000

补位完成后的数据如下(为了简介用16进制表示):

61626380 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000

为什么是448?

因为在第一步的预处理后,第二步会再附加上一个64bit的数据,用来表示原始报文的长度信息。而448+64=512,正好拼成了一个完整的结构。

STEP2:附加长度值

附加长度值就是将原始数据(第一步填充前的消息)的长度信息补到已经进行了填充操作的消息后面。

wiki百科中给出的原文是:append length of message (before pre-processing), in bits, as 64-bit big-endian integer

SHA256用一个64位的数据来表示原始消息的长度。

因此,通过SHA256计算的消息长度必须要小于$ 2^64 $,当然绝大多数情况这足够大了。

长度信息的编码方式为64-bit big-endian integer

关于Big endian的含义,文末给出了补充

回到刚刚的例子,消息“abc”,3个字符,占用24个bit

因此,在进行了补长度的操作以后,整个消息就变成下面这样了(16进制格式)

61626380 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000018

2.3 逻辑运算

SHA256散列函数中涉及的操作全部是逻辑的位运算

包括如下的逻辑函数:

Ch(x,y,z)=(x∧y)⊕(¬x∧z)

Ma(x,y,z)=(x∧y)⊕(x∧z)⊕(y∧z)

Σ 0 (x)=S 2 (x)⊕S 13 (x)⊕S 22 (x)

Σ 1 (x)=S 6 (x)⊕S 11 (x)⊕S 25 (x)

σ 0 (x)=S 7 (x)⊕S 18 (x)⊕R 3 (x)

σ 1 (x)=S 17 (x)⊕S 19 (x)⊕R 10 (x)

 

2.4 计算消息摘要
 

现在来介绍SHA256算法的主体部分,即消息摘要是如何计算的。

首先:将消息分解成512-bit大小的块(break message into 512-bit chunks)

假设消息M可以被分解为n个块,于是整个算法需要做的就是完成n次迭代,n次迭代的结果就是最终的哈希值,即256bit的数字摘要。

一个256-bit的摘要的初始值H0,经过第一个数据块进行运算,得到H1,即完成了第一次迭代H1经过第二个数据块得到H2,……,依次处理,最后得到Hn,Hn即为最终的256-bit消息摘要将每次迭代进行的映射用$ Map(H_{i-1}) = H_{i} $表示,于是迭代可以更形象的展示为:

图中256-bit的Hi被描述8个小块,这是因为SHA256算法中的最小运算单元称为“字”(Word),一个字是32位。此外,第一次迭代中,映射的初值设置为前面介绍的8个哈希初值,如下图所示:

下面开始介绍每一次迭代的内容,即映射$ Map(H_{i-1}) = H_{i} $的具体算法

STEP1:构造64个字(word)

break chunk into sixteen 32-bit big-endian words w[0], …, w[15]

对于每一块,将块分解为16个32-bit的big-endian的字,记为w[0], …, w[15]

也就是说,前16个字直接由消息的第i个块分解得到

其余的字由如下迭代公式得到:

W t =σ 1 (W t−2 ) W t−7 σ 0 (W t−15 ) W t−16
​    
 

STEP2:进行64次循环

映射 $ Map(H_{i-1}) = H_{i} $ 包含了64次加密循环

即进行64次加密循环即可完成一次迭代

每次加密循环可以由下图描述:

图中,ABCDEFGH这8个字(word)在按照一定的规则进行更新,其中

深蓝色方块是事先定义好的非线性逻辑函数,上文已经做过铺垫

红色田字方块代表 mod $ 2^{32} $ addition,即将两个数字加在一起,如果结果大于$ 2^{32} ,你必须除以,你必须除以 2^{32} $并找到余数。

ABCDEFGH一开始的初始值分别为$ H_{i-1}(0),H_{i-1}(1),…,H_{i-1}(7) $

Kt是第t个密钥,对应我们上文提到的64个常量

Wt是本区块产生第t个word。原消息被切成固定长度512-bit的区块,对每一个区块,产生64个word,通过重复运行循环n次对ABCDEFGH这八个字循环加密。

最后一次循环所产生的八个字合起来即是第i个块对应到的散列字符串$ H_{i} $

由此变完成了SHA256算法的所有介绍
 

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#define SHA224_DIGEST_SIZE ( 224 / 8)
#define SHA256_DIGEST_SIZE ( 256 / 8)
#define SHA384_DIGEST_SIZE ( 384 / 8)
#define SHA512_DIGEST_SIZE ( 512 / 8)

#define SHA256_BLOCK_SIZE  ( 512 / 8)
#define SHA512_BLOCK_SIZE  (1024 / 8)
#define SHA384_BLOCK_SIZE  SHA512_BLOCK_SIZE
#define SHA224_BLOCK_SIZE  SHA256_BLOCK_SIZE

#ifndef SHA2_TYPES
#define SHA2_TYPES
typedef unsigned char uint8;
typedef unsigned int  uint32;
typedef unsigned long long uint64;
#endif

typedef struct {
    unsigned int tot_len;
    unsigned int len;
    unsigned char block[2 * SHA256_BLOCK_SIZE];
    uint32 h[8];
} sha256_ctx;

typedef struct {
    unsigned int tot_len;
    unsigned int len;
    unsigned char block[2 * SHA512_BLOCK_SIZE];
    uint64 h[8];
} sha512_ctx;

typedef sha512_ctx sha384_ctx;
typedef sha256_ctx sha224_ctx;

void sha224_init(sha224_ctx *ctx);
void sha224_update(sha224_ctx *ctx, const unsigned char *message,
                   unsigned int len);
void sha224_final(sha224_ctx *ctx, unsigned char *digest);
void sha224(const unsigned char *message, unsigned int len,
            unsigned char *digest);

void sha256_init(sha256_ctx * ctx);
void sha256_update(sha256_ctx *ctx, const unsigned char *message,
                   unsigned int len);
void sha256_final(sha256_ctx *ctx, unsigned char *digest);
void sha256(const unsigned char *message, unsigned int len,
            unsigned char *digest);

void sha384_init(sha384_ctx *ctx);
void sha384_update(sha384_ctx *ctx, const unsigned char *message,
                   unsigned int len);
void sha384_final(sha384_ctx *ctx, unsigned char *digest);
void sha384(const unsigned char *message, unsigned int len,
            unsigned char *digest);

void sha512_init(sha512_ctx *ctx);
void sha512_update(sha512_ctx *ctx, const unsigned char *message,
                   unsigned int len);
void sha512_final(sha512_ctx *ctx, unsigned char *digest);
void sha512(const unsigned char *message, unsigned int len,
            unsigned char *digest);

#define SHFR(x, n)    (x >> n)
#define ROTR(x, n)   ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define ROTL(x, n)   ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define CH(x, y, z)  ((x & y) ^ (~x & z))
#define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))

#define SHA256_F1(x) (ROTR(x,  2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define SHA256_F2(x) (ROTR(x,  6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SHA256_F3(x) (ROTR(x,  7) ^ ROTR(x, 18) ^ SHFR(x,  3))
#define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10))

#define SHA512_F1(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39))
#define SHA512_F2(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41))
#define SHA512_F3(x) (ROTR(x,  1) ^ ROTR(x,  8) ^ SHFR(x,  7))
#define SHA512_F4(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHFR(x,  6))

#define UNPACK32(x, str)                      \
{                                             \
    *((str) + 3) = (uint8) ((x)      );       \
    *((str) + 2) = (uint8) ((x) >>  8);       \
    *((str) + 1) = (uint8) ((x) >> 16);       \
    *((str) + 0) = (uint8) ((x) >> 24);       \
}

#define PACK32(str, x)                        \
{                                             \
    *(x) =   ((uint32) *((str) + 3)      )    \
           | ((uint32) *((str) + 2) <<  8)    \
           | ((uint32) *((str) + 1) << 16)    \
           | ((uint32) *((str) + 0) << 24);   \
}

#define UNPACK64(x, str)                      \
{                                             \
    *((str) + 7) = (uint8) ((x)      );       \
    *((str) + 6) = (uint8) ((x) >>  8);       \
    *((str) + 5) = (uint8) ((x) >> 16);       \
    *((str) + 4) = (uint8) ((x) >> 24);       \
    *((str) + 3) = (uint8) ((x) >> 32);       \
    *((str) + 2) = (uint8) ((x) >> 40);       \
    *((str) + 1) = (uint8) ((x) >> 48);       \
    *((str) + 0) = (uint8) ((x) >> 56);       \
}

#define PACK64(str, x)                        \
{                                             \
    *(x) =   ((uint64) *((str) + 7)      )    \
           | ((uint64) *((str) + 6) <<  8)    \
           | ((uint64) *((str) + 5) << 16)    \
           | ((uint64) *((str) + 4) << 24)    \
           | ((uint64) *((str) + 3) << 32)    \
           | ((uint64) *((str) + 2) << 40)    \
           | ((uint64) *((str) + 1) << 48)    \
           | ((uint64) *((str) + 0) << 56);   \
}

/* Macros used for loops unrolling */

#define SHA256_SCR(i)                         \
{                                             \
    w[i] =  SHA256_F4(w[i -  2]) + w[i -  7]  \
          + SHA256_F3(w[i - 15]) + w[i - 16]; \
}

#define SHA512_SCR(i)                         \
{                                             \
    w[i] =  SHA512_F4(w[i -  2]) + w[i -  7]  \
          + SHA512_F3(w[i - 15]) + w[i - 16]; \
}

#define SHA256_EXP(a, b, c, d, e, f, g, h, j)               \
{                                                           \
    t1 = wv[h] + SHA256_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) \
         + sha256_k[j] + w[j];                              \
    t2 = SHA256_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]);       \
    wv[d] += t1;                                            \
    wv[h] = t1 + t2;                                        \
}

#define SHA512_EXP(a, b, c, d, e, f, g ,h, j)               \
{                                                           \
    t1 = wv[h] + SHA512_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) \
         + sha512_k[j] + w[j];                              \
    t2 = SHA512_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]);       \
    wv[d] += t1;                                            \
    wv[h] = t1 + t2;                                        \
}

uint32 sha224_h0[8] =
            {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
             0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};

uint32 sha256_h0[8] =
            {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
             0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};

uint64 sha384_h0[8] =
            {0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL,
             0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL,
             0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL,
             0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL};

uint64 sha512_h0[8] =
            {0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
             0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
             0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
             0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL};

uint32 sha256_k[64] =
            {0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
             0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
             0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
             0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
             0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
             0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
             0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
             0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
             0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
             0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
             0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
             0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
             0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
             0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
             0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
             0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};

uint64 sha512_k[80] =
            {0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
             0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
             0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
             0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
             0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
             0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
             0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
             0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
             0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
             0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
             0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
             0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
             0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
             0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
             0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
             0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
             0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
             0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
             0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
             0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
             0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
             0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
             0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
             0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
             0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
             0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
             0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
             0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
             0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
             0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
             0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
             0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
             0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
             0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
             0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
             0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
             0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
             0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
             0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
             0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL};

/* SHA-256 functions */

void sha256_transf(sha256_ctx *ctx, const unsigned char *message,
                   unsigned int block_nb)
{
    uint32 w[64];
    uint32 wv[8];
    uint32 t1, t2;
    const unsigned char *sub_block;
    int i;

#ifndef UNROLL_LOOPS
    int j;
#endif

    for (i = 0; i < (int) block_nb; i++) {
        sub_block = message + (i << 6);

#ifndef UNROLL_LOOPS
        for (j = 0; j < 16; j++) {
            PACK32(&sub_block[j << 2], &w[j]);
        }

        for (j = 16; j < 64; j++) {
            SHA256_SCR(j);
        }

        for (j = 0; j < 8; j++) {
            wv[j] = ctx->h[j];
        }

        for (j = 0; j < 64; j++) {
            t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
                + sha256_k[j] + w[j];
            t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
            wv[7] = wv[6];
            wv[6] = wv[5];
            wv[5] = wv[4];
            wv[4] = wv[3] + t1;
            wv[3] = wv[2];
            wv[2] = wv[1];
            wv[1] = wv[0];
            wv[0] = t1 + t2;
        }

        for (j = 0; j < 8; j++) {
            ctx->h[j] += wv[j];
        }
#else
        PACK32(&sub_block[ 0], &w[ 0]); PACK32(&sub_block[ 4], &w[ 1]);
        PACK32(&sub_block[ 8], &w[ 2]); PACK32(&sub_block[12], &w[ 3]);
        PACK32(&sub_block[16], &w[ 4]); PACK32(&sub_block[20], &w[ 5]);
        PACK32(&sub_block[24], &w[ 6]); PACK32(&sub_block[28], &w[ 7]);
        PACK32(&sub_block[32], &w[ 8]); PACK32(&sub_block[36], &w[ 9]);
        PACK32(&sub_block[40], &w[10]); PACK32(&sub_block[44], &w[11]);
        PACK32(&sub_block[48], &w[12]); PACK32(&sub_block[52], &w[13]);
        PACK32(&sub_block[56], &w[14]); PACK32(&sub_block[60], &w[15]);

        SHA256_SCR(16); SHA256_SCR(17); SHA256_SCR(18); SHA256_SCR(19);
        SHA256_SCR(20); SHA256_SCR(21); SHA256_SCR(22); SHA256_SCR(23);
        SHA256_SCR(24); SHA256_SCR(25); SHA256_SCR(26); SHA256_SCR(27);
        SHA256_SCR(28); SHA256_SCR(29); SHA256_SCR(30); SHA256_SCR(31);
        SHA256_SCR(32); SHA256_SCR(33); SHA256_SCR(34); SHA256_SCR(35);
        SHA256_SCR(36); SHA256_SCR(37); SHA256_SCR(38); SHA256_SCR(39);
        SHA256_SCR(40); SHA256_SCR(41); SHA256_SCR(42); SHA256_SCR(43);
        SHA256_SCR(44); SHA256_SCR(45); SHA256_SCR(46); SHA256_SCR(47);
        SHA256_SCR(48); SHA256_SCR(49); SHA256_SCR(50); SHA256_SCR(51);
        SHA256_SCR(52); SHA256_SCR(53); SHA256_SCR(54); SHA256_SCR(55);
        SHA256_SCR(56); SHA256_SCR(57); SHA256_SCR(58); SHA256_SCR(59);
        SHA256_SCR(60); SHA256_SCR(61); SHA256_SCR(62); SHA256_SCR(63);

        wv[0] = ctx->h[0]; wv[1] = ctx->h[1];
        wv[2] = ctx->h[2]; wv[3] = ctx->h[3];
        wv[4] = ctx->h[4]; wv[5] = ctx->h[5];
        wv[6] = ctx->h[6]; wv[7] = ctx->h[7];

        SHA256_EXP(0,1,2,3,4,5,6,7, 0); SHA256_EXP(7,0,1,2,3,4,5,6, 1);
        SHA256_EXP(6,7,0,1,2,3,4,5, 2); SHA256_EXP(5,6,7,0,1,2,3,4, 3);
        SHA256_EXP(4,5,6,7,0,1,2,3, 4); SHA256_EXP(3,4,5,6,7,0,1,2, 5);
        SHA256_EXP(2,3,4,5,6,7,0,1, 6); SHA256_EXP(1,2,3,4,5,6,7,0, 7);
        SHA256_EXP(0,1,2,3,4,5,6,7, 8); SHA256_EXP(7,0,1,2,3,4,5,6, 9);
        SHA256_EXP(6,7,0,1,2,3,4,5,10); SHA256_EXP(5,6,7,0,1,2,3,4,11);
        SHA256_EXP(4,5,6,7,0,1,2,3,12); SHA256_EXP(3,4,5,6,7,0,1,2,13);
        SHA256_EXP(2,3,4,5,6,7,0,1,14); SHA256_EXP(1,2,3,4,5,6,7,0,15);
        SHA256_EXP(0,1,2,3,4,5,6,7,16); SHA256_EXP(7,0,1,2,3,4,5,6,17);
        SHA256_EXP(6,7,0,1,2,3,4,5,18); SHA256_EXP(5,6,7,0,1,2,3,4,19);
        SHA256_EXP(4,5,6,7,0,1,2,3,20); SHA256_EXP(3,4,5,6,7,0,1,2,21);
        SHA256_EXP(2,3,4,5,6,7,0,1,22); SHA256_EXP(1,2,3,4,5,6,7,0,23);
        SHA256_EXP(0,1,2,3,4,5,6,7,24); SHA256_EXP(7,0,1,2,3,4,5,6,25);
        SHA256_EXP(6,7,0,1,2,3,4,5,26); SHA256_EXP(5,6,7,0,1,2,3,4,27);
        SHA256_EXP(4,5,6,7,0,1,2,3,28); SHA256_EXP(3,4,5,6,7,0,1,2,29);
        SHA256_EXP(2,3,4,5,6,7,0,1,30); SHA256_EXP(1,2,3,4,5,6,7,0,31);
        SHA256_EXP(0,1,2,3,4,5,6,7,32); SHA256_EXP(7,0,1,2,3,4,5,6,33);
        SHA256_EXP(6,7,0,1,2,3,4,5,34); SHA256_EXP(5,6,7,0,1,2,3,4,35);
        SHA256_EXP(4,5,6,7,0,1,2,3,36); SHA256_EXP(3,4,5,6,7,0,1,2,37);
        SHA256_EXP(2,3,4,5,6,7,0,1,38); SHA256_EXP(1,2,3,4,5,6,7,0,39);
        SHA256_EXP(0,1,2,3,4,5,6,7,40); SHA256_EXP(7,0,1,2,3,4,5,6,41);
        SHA256_EXP(6,7,0,1,2,3,4,5,42); SHA256_EXP(5,6,7,0,1,2,3,4,43);
        SHA256_EXP(4,5,6,7,0,1,2,3,44); SHA256_EXP(3,4,5,6,7,0,1,2,45);
        SHA256_EXP(2,3,4,5,6,7,0,1,46); SHA256_EXP(1,2,3,4,5,6,7,0,47);
        SHA256_EXP(0,1,2,3,4,5,6,7,48); SHA256_EXP(7,0,1,2,3,4,5,6,49);
        SHA256_EXP(6,7,0,1,2,3,4,5,50); SHA256_EXP(5,6,7,0,1,2,3,4,51);
        SHA256_EXP(4,5,6,7,0,1,2,3,52); SHA256_EXP(3,4,5,6,7,0,1,2,53);
        SHA256_EXP(2,3,4,5,6,7,0,1,54); SHA256_EXP(1,2,3,4,5,6,7,0,55);
        SHA256_EXP(0,1,2,3,4,5,6,7,56); SHA256_EXP(7,0,1,2,3,4,5,6,57);
        SHA256_EXP(6,7,0,1,2,3,4,5,58); SHA256_EXP(5,6,7,0,1,2,3,4,59);
        SHA256_EXP(4,5,6,7,0,1,2,3,60); SHA256_EXP(3,4,5,6,7,0,1,2,61);
        SHA256_EXP(2,3,4,5,6,7,0,1,62); SHA256_EXP(1,2,3,4,5,6,7,0,63);

        ctx->h[0] += wv[0]; ctx->h[1] += wv[1];
        ctx->h[2] += wv[2]; ctx->h[3] += wv[3];
        ctx->h[4] += wv[4]; ctx->h[5] += wv[5];
        ctx->h[6] += wv[6]; ctx->h[7] += wv[7];
#endif /* !UNROLL_LOOPS */
    }
}

void sha256(const unsigned char *message, unsigned int len, unsigned char *digest)
{
    sha256_ctx ctx;

    sha256_init(&ctx);
    sha256_update(&ctx, message, len);
    sha256_final(&ctx, digest);
}

void sha256_init(sha256_ctx *ctx)
{
#ifndef UNROLL_LOOPS
    int i;
    for (i = 0; i < 8; i++) {
        ctx->h[i] = sha256_h0[i];
    }
#else
    ctx->h[0] = sha256_h0[0]; ctx->h[1] = sha256_h0[1];
    ctx->h[2] = sha256_h0[2]; ctx->h[3] = sha256_h0[3];
    ctx->h[4] = sha256_h0[4]; ctx->h[5] = sha256_h0[5];
    ctx->h[6] = sha256_h0[6]; ctx->h[7] = sha256_h0[7];
#endif /* !UNROLL_LOOPS */

    ctx->len = 0;
    ctx->tot_len = 0;
}

void sha256_update(sha256_ctx *ctx, const unsigned char *message,
                   unsigned int len)
{
    unsigned int block_nb;
    unsigned int new_len, rem_len, tmp_len;
    const unsigned char *shifted_message;

    tmp_len = SHA256_BLOCK_SIZE - ctx->len;
    rem_len = len < tmp_len ? len : tmp_len;

    memcpy(&ctx->block[ctx->len], message, rem_len);

    if (ctx->len + len < SHA256_BLOCK_SIZE) {
        ctx->len += len;
        return;
    }

    new_len = len - rem_len;
    block_nb = new_len / SHA256_BLOCK_SIZE;

    shifted_message = message + rem_len;

    sha256_transf(ctx, ctx->block, 1);
    sha256_transf(ctx, shifted_message, block_nb);

    rem_len = new_len % SHA256_BLOCK_SIZE;

    memcpy(ctx->block, &shifted_message[block_nb << 6],
           rem_len);

    ctx->len = rem_len;
    ctx->tot_len += (block_nb + 1) << 6;
}

void sha256_final(sha256_ctx *ctx, unsigned char *digest)
{
    unsigned int block_nb;
    unsigned int pm_len;
    unsigned int len_b;

#ifndef UNROLL_LOOPS
    int i;
#endif

    block_nb = (1 + ((SHA256_BLOCK_SIZE - 9)
                     < (ctx->len % SHA256_BLOCK_SIZE)));

    len_b = (ctx->tot_len + ctx->len) << 3;
    pm_len = block_nb << 6;

    memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
    ctx->block[ctx->len] = 0x80;
    UNPACK32(len_b, ctx->block + pm_len - 4);

    sha256_transf(ctx, ctx->block, block_nb);

#ifndef UNROLL_LOOPS
    for (i = 0 ; i < 8; i++) {
        UNPACK32(ctx->h[i], &digest[i << 2]);
    }
#else
   UNPACK32(ctx->h[0], &digest[ 0]);
   UNPACK32(ctx->h[1], &digest[ 4]);
   UNPACK32(ctx->h[2], &digest[ 8]);
   UNPACK32(ctx->h[3], &digest[12]);
   UNPACK32(ctx->h[4], &digest[16]);
   UNPACK32(ctx->h[5], &digest[20]);
   UNPACK32(ctx->h[6], &digest[24]);
   UNPACK32(ctx->h[7], &digest[28]);
#endif /* !UNROLL_LOOPS */
}

/* SHA-512 functions */

void sha512_transf(sha512_ctx *ctx, const unsigned char *message,
                   unsigned int block_nb)
{
    uint64 w[80];
    uint64 wv[8];
    uint64 t1, t2;
    const unsigned char *sub_block;
    int i, j;

    for (i = 0; i < (int) block_nb; i++) {
        sub_block = message + (i << 7);

#ifndef UNROLL_LOOPS
        for (j = 0; j < 16; j++) {
            PACK64(&sub_block[j << 3], &w[j]);
        }

        for (j = 16; j < 80; j++) {
            SHA512_SCR(j);
        }

        for (j = 0; j < 8; j++) {
            wv[j] = ctx->h[j];
        }

        for (j = 0; j < 80; j++) {
            t1 = wv[7] + SHA512_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
                + sha512_k[j] + w[j];
            t2 = SHA512_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
            wv[7] = wv[6];
            wv[6] = wv[5];
            wv[5] = wv[4];
            wv[4] = wv[3] + t1;
            wv[3] = wv[2];
            wv[2] = wv[1];
            wv[1] = wv[0];
            wv[0] = t1 + t2;
        }

        for (j = 0; j < 8; j++) {
            ctx->h[j] += wv[j];
        }
#else
        PACK64(&sub_block[  0], &w[ 0]); PACK64(&sub_block[  8], &w[ 1]);
        PACK64(&sub_block[ 16], &w[ 2]); PACK64(&sub_block[ 24], &w[ 3]);
        PACK64(&sub_block[ 32], &w[ 4]); PACK64(&sub_block[ 40], &w[ 5]);
        PACK64(&sub_block[ 48], &w[ 6]); PACK64(&sub_block[ 56], &w[ 7]);
        PACK64(&sub_block[ 64], &w[ 8]); PACK64(&sub_block[ 72], &w[ 9]);
        PACK64(&sub_block[ 80], &w[10]); PACK64(&sub_block[ 88], &w[11]);
        PACK64(&sub_block[ 96], &w[12]); PACK64(&sub_block[104], &w[13]);
        PACK64(&sub_block[112], &w[14]); PACK64(&sub_block[120], &w[15]);

        SHA512_SCR(16); SHA512_SCR(17); SHA512_SCR(18); SHA512_SCR(19);
        SHA512_SCR(20); SHA512_SCR(21); SHA512_SCR(22); SHA512_SCR(23);
        SHA512_SCR(24); SHA512_SCR(25); SHA512_SCR(26); SHA512_SCR(27);
        SHA512_SCR(28); SHA512_SCR(29); SHA512_SCR(30); SHA512_SCR(31);
        SHA512_SCR(32); SHA512_SCR(33); SHA512_SCR(34); SHA512_SCR(35);
        SHA512_SCR(36); SHA512_SCR(37); SHA512_SCR(38); SHA512_SCR(39);
        SHA512_SCR(40); SHA512_SCR(41); SHA512_SCR(42); SHA512_SCR(43);
        SHA512_SCR(44); SHA512_SCR(45); SHA512_SCR(46); SHA512_SCR(47);
        SHA512_SCR(48); SHA512_SCR(49); SHA512_SCR(50); SHA512_SCR(51);
        SHA512_SCR(52); SHA512_SCR(53); SHA512_SCR(54); SHA512_SCR(55);
        SHA512_SCR(56); SHA512_SCR(57); SHA512_SCR(58); SHA512_SCR(59);
        SHA512_SCR(60); SHA512_SCR(61); SHA512_SCR(62); SHA512_SCR(63);
        SHA512_SCR(64); SHA512_SCR(65); SHA512_SCR(66); SHA512_SCR(67);
        SHA512_SCR(68); SHA512_SCR(69); SHA512_SCR(70); SHA512_SCR(71);
        SHA512_SCR(72); SHA512_SCR(73); SHA512_SCR(74); SHA512_SCR(75);
        SHA512_SCR(76); SHA512_SCR(77); SHA512_SCR(78); SHA512_SCR(79);

        wv[0] = ctx->h[0]; wv[1] = ctx->h[1];
        wv[2] = ctx->h[2]; wv[3] = ctx->h[3];
        wv[4] = ctx->h[4]; wv[5] = ctx->h[5];
        wv[6] = ctx->h[6]; wv[7] = ctx->h[7];

        j = 0;

        do {
            SHA512_EXP(0,1,2,3,4,5,6,7,j); j++;
            SHA512_EXP(7,0,1,2,3,4,5,6,j); j++;
            SHA512_EXP(6,7,0,1,2,3,4,5,j); j++;
            SHA512_EXP(5,6,7,0,1,2,3,4,j); j++;
            SHA512_EXP(4,5,6,7,0,1,2,3,j); j++;
            SHA512_EXP(3,4,5,6,7,0,1,2,j); j++;
            SHA512_EXP(2,3,4,5,6,7,0,1,j); j++;
            SHA512_EXP(1,2,3,4,5,6,7,0,j); j++;
        } while (j < 80);

        ctx->h[0] += wv[0]; ctx->h[1] += wv[1];
        ctx->h[2] += wv[2]; ctx->h[3] += wv[3];
        ctx->h[4] += wv[4]; ctx->h[5] += wv[5];
        ctx->h[6] += wv[6]; ctx->h[7] += wv[7];
#endif /* !UNROLL_LOOPS */
    }
}

void sha512(const unsigned char *message, unsigned int len,
            unsigned char *digest)
{
    sha512_ctx ctx;

    sha512_init(&ctx);
    sha512_update(&ctx, message, len);
    sha512_final(&ctx, digest);
}

void sha512_init(sha512_ctx *ctx)
{
#ifndef UNROLL_LOOPS
    int i;
    for (i = 0; i < 8; i++) {
        ctx->h[i] = sha512_h0[i];
    }
#else
    ctx->h[0] = sha512_h0[0]; ctx->h[1] = sha512_h0[1];
    ctx->h[2] = sha512_h0[2]; ctx->h[3] = sha512_h0[3];
    ctx->h[4] = sha512_h0[4]; ctx->h[5] = sha512_h0[5];
    ctx->h[6] = sha512_h0[6]; ctx->h[7] = sha512_h0[7];
#endif /* !UNROLL_LOOPS */

    ctx->len = 0;
    ctx->tot_len = 0;
}

void sha512_update(sha512_ctx *ctx, const unsigned char *message,
                   unsigned int len)
{
    unsigned int block_nb;
    unsigned int new_len, rem_len, tmp_len;
    const unsigned char *shifted_message;

    tmp_len = SHA512_BLOCK_SIZE - ctx->len;
    rem_len = len < tmp_len ? len : tmp_len;

    memcpy(&ctx->block[ctx->len], message, rem_len);

    if (ctx->len + len < SHA512_BLOCK_SIZE) {
        ctx->len += len;
        return;
    }

    new_len = len - rem_len;
    block_nb = new_len / SHA512_BLOCK_SIZE;

    shifted_message = message + rem_len;

    sha512_transf(ctx, ctx->block, 1);
    sha512_transf(ctx, shifted_message, block_nb);

    rem_len = new_len % SHA512_BLOCK_SIZE;

    memcpy(ctx->block, &shifted_message[block_nb << 7],
           rem_len);

    ctx->len = rem_len;
    ctx->tot_len += (block_nb + 1) << 7;
}

void sha512_final(sha512_ctx *ctx, unsigned char *digest)
{
    unsigned int block_nb;
    unsigned int pm_len;
    unsigned int len_b;

#ifndef UNROLL_LOOPS
    int i;
#endif

    block_nb = 1 + ((SHA512_BLOCK_SIZE - 17)
                     < (ctx->len % SHA512_BLOCK_SIZE));

    len_b = (ctx->tot_len + ctx->len) << 3;
    pm_len = block_nb << 7;

    memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
    ctx->block[ctx->len] = 0x80;
    UNPACK32(len_b, ctx->block + pm_len - 4);

    sha512_transf(ctx, ctx->block, block_nb);

#ifndef UNROLL_LOOPS
    for (i = 0 ; i < 8; i++) {
        UNPACK64(ctx->h[i], &digest[i << 3]);
    }
#else
    UNPACK64(ctx->h[0], &digest[ 0]);
    UNPACK64(ctx->h[1], &digest[ 8]);
    UNPACK64(ctx->h[2], &digest[16]);
    UNPACK64(ctx->h[3], &digest[24]);
    UNPACK64(ctx->h[4], &digest[32]);
    UNPACK64(ctx->h[5], &digest[40]);
    UNPACK64(ctx->h[6], &digest[48]);
    UNPACK64(ctx->h[7], &digest[56]);
#endif /* !UNROLL_LOOPS */
}

/* SHA-384 functions */

void sha384(const unsigned char *message, unsigned int len,
            unsigned char *digest)
{
    sha384_ctx ctx;

    sha384_init(&ctx);
    sha384_update(&ctx, message, len);
    sha384_final(&ctx, digest);
}

void sha384_init(sha384_ctx *ctx)
{
#ifndef UNROLL_LOOPS
    int i;
    for (i = 0; i < 8; i++) {
        ctx->h[i] = sha384_h0[i];
    }
#else
    ctx->h[0] = sha384_h0[0]; ctx->h[1] = sha384_h0[1];
    ctx->h[2] = sha384_h0[2]; ctx->h[3] = sha384_h0[3];
    ctx->h[4] = sha384_h0[4]; ctx->h[5] = sha384_h0[5];
    ctx->h[6] = sha384_h0[6]; ctx->h[7] = sha384_h0[7];
#endif /* !UNROLL_LOOPS */

    ctx->len = 0;
    ctx->tot_len = 0;
}

void sha384_update(sha384_ctx *ctx, const unsigned char *message,
                   unsigned int len)
{
    unsigned int block_nb;
    unsigned int new_len, rem_len, tmp_len;
    const unsigned char *shifted_message;

    tmp_len = SHA384_BLOCK_SIZE - ctx->len;
    rem_len = len < tmp_len ? len : tmp_len;

    memcpy(&ctx->block[ctx->len], message, rem_len);

    if (ctx->len + len < SHA384_BLOCK_SIZE) {
        ctx->len += len;
        return;
    }

    new_len = len - rem_len;
    block_nb = new_len / SHA384_BLOCK_SIZE;

    shifted_message = message + rem_len;

    sha512_transf(ctx, ctx->block, 1);
    sha512_transf(ctx, shifted_message, block_nb);

    rem_len = new_len % SHA384_BLOCK_SIZE;

    memcpy(ctx->block, &shifted_message[block_nb << 7],
           rem_len);

    ctx->len = rem_len;
    ctx->tot_len += (block_nb + 1) << 7;
}

void sha384_final(sha384_ctx *ctx, unsigned char *digest)
{
    unsigned int block_nb;
    unsigned int pm_len;
    unsigned int len_b;

#ifndef UNROLL_LOOPS
    int i;
#endif

    block_nb = (1 + ((SHA384_BLOCK_SIZE - 17)
                     < (ctx->len % SHA384_BLOCK_SIZE)));

    len_b = (ctx->tot_len + ctx->len) << 3;
    pm_len = block_nb << 7;

    memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
    ctx->block[ctx->len] = 0x80;
    UNPACK32(len_b, ctx->block + pm_len - 4);

    sha512_transf(ctx, ctx->block, block_nb);

#ifndef UNROLL_LOOPS
    for (i = 0 ; i < 6; i++) {
        UNPACK64(ctx->h[i], &digest[i << 3]);
    }
#else
    UNPACK64(ctx->h[0], &digest[ 0]);
    UNPACK64(ctx->h[1], &digest[ 8]);
    UNPACK64(ctx->h[2], &digest[16]);
    UNPACK64(ctx->h[3], &digest[24]);
    UNPACK64(ctx->h[4], &digest[32]);
    UNPACK64(ctx->h[5], &digest[40]);
#endif /* !UNROLL_LOOPS */
}

/* SHA-224 functions */

void sha224(const unsigned char *message, unsigned int len,
            unsigned char *digest)
{
    sha224_ctx ctx;

    sha224_init(&ctx);
    sha224_update(&ctx, message, len);
    sha224_final(&ctx, digest);
}

void sha224_init(sha224_ctx *ctx)
{
#ifndef UNROLL_LOOPS
    int i;
    for (i = 0; i < 8; i++) {
        ctx->h[i] = sha224_h0[i];
    }
#else
    ctx->h[0] = sha224_h0[0]; ctx->h[1] = sha224_h0[1];
    ctx->h[2] = sha224_h0[2]; ctx->h[3] = sha224_h0[3];
    ctx->h[4] = sha224_h0[4]; ctx->h[5] = sha224_h0[5];
    ctx->h[6] = sha224_h0[6]; ctx->h[7] = sha224_h0[7];
#endif /* !UNROLL_LOOPS */

    ctx->len = 0;
    ctx->tot_len = 0;
}

void sha224_update(sha224_ctx *ctx, const unsigned char *message,
                   unsigned int len)
{
    unsigned int block_nb;
    unsigned int new_len, rem_len, tmp_len;
    const unsigned char *shifted_message;

    tmp_len = SHA224_BLOCK_SIZE - ctx->len;
    rem_len = len < tmp_len ? len : tmp_len;

    memcpy(&ctx->block[ctx->len], message, rem_len);

    if (ctx->len + len < SHA224_BLOCK_SIZE) {
        ctx->len += len;
        return;
    }

    new_len = len - rem_len;
    block_nb = new_len / SHA224_BLOCK_SIZE;

    shifted_message = message + rem_len;

    sha256_transf(ctx, ctx->block, 1);
    sha256_transf(ctx, shifted_message, block_nb);

    rem_len = new_len % SHA224_BLOCK_SIZE;

    memcpy(ctx->block, &shifted_message[block_nb << 6],
           rem_len);

    ctx->len = rem_len;
    ctx->tot_len += (block_nb + 1) << 6;
}

void sha224_final(sha224_ctx *ctx, unsigned char *digest)
{
    unsigned int block_nb;
    unsigned int pm_len;
    unsigned int len_b;

#ifndef UNROLL_LOOPS
    int i;
#endif

    block_nb = (1 + ((SHA224_BLOCK_SIZE - 9)
                     < (ctx->len % SHA224_BLOCK_SIZE)));

    len_b = (ctx->tot_len + ctx->len) << 3;
    pm_len = block_nb << 6;

    memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
    ctx->block[ctx->len] = 0x80;
    UNPACK32(len_b, ctx->block + pm_len - 4);

    sha256_transf(ctx, ctx->block, block_nb);

#ifndef UNROLL_LOOPS
    for (i = 0 ; i < 7; i++) {
        UNPACK32(ctx->h[i], &digest[i << 2]);
    }
#else
   UNPACK32(ctx->h[0], &digest[ 0]);
   UNPACK32(ctx->h[1], &digest[ 4]);
   UNPACK32(ctx->h[2], &digest[ 8]);
   UNPACK32(ctx->h[3], &digest[12]);
   UNPACK32(ctx->h[4], &digest[16]);
   UNPACK32(ctx->h[5], &digest[20]);
   UNPACK32(ctx->h[6], &digest[24]);
#endif /* !UNROLL_LOOPS */
}

void test(const char *vector, unsigned char *digest,
          unsigned int digest_size)
{
    char output[2 * SHA512_DIGEST_SIZE + 1];
    int i;

    output[2 * digest_size] = '\0';

    for (i = 0; i < (int) digest_size ; i++) {
       sprintf(output + 2 * i, "%02x", digest[i]);
    }

    printf("H: %s\n", output);
    if (strcmp(vector, output)) {
        fprintf(stderr, "Test failed.\n");
        exit(EXIT_FAILURE);
    }
}

int main()
{
    static const char *vectors[4][3] =
    {   /* SHA-224 */
        {
        "23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7",
        "75388b16512776cc5dba5da1fd890150b0c6455cb4f58b1952522525",
        "20794655980c91d8bbb4c1ea97618a4bf03f42581948b2ee4ee7ad67",
        },
        /* SHA-256 */
        {
        "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad",
        "248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1",
        "cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0",
        },
        /* SHA-384 */
        {
        "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed"
        "8086072ba1e7cc2358baeca134c825a7",
        "09330c33f71147e83d192fc782cd1b4753111b173b3b05d22fa08086e3b0f712"
        "fcc7c71a557e2db966c3e9fa91746039",
        "9d0e1809716474cb086e834e310a4a1ced149e9c00f248527972cec5704c2a5b"
        "07b8b3dc38ecc4ebae97ddd87f3d8985",
        },
        /* SHA-512 */
        {
        "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
        "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f",
        "8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018"
        "501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909",
        "e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb"
        "de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b"
        }
    };

    static const char message1[] = "abc";
    static const char message2a[] = "abcdbcdecdefdefgefghfghighijhi"
                                    "jkijkljklmklmnlmnomnopnopq";
    static const char message2b[] = "abcdefghbcdefghicdefghijdefghijkefghij"
                                    "klfghijklmghijklmnhijklmnoijklmnopjklm"
                                    "nopqklmnopqrlmnopqrsmnopqrstnopqrstu";
    unsigned char *message3;
    unsigned int message3_len = 1000000;
    unsigned char digest[SHA512_DIGEST_SIZE];

    message3 = malloc(message3_len);
    if (message3 == NULL) {
        fprintf(stderr, "Can't allocate memory\n");
        return -1;
    }
    memset(message3, 'a', message3_len);

    printf("SHA-2 FIPS 180-2 Validation tests\n\n");
    printf("SHA-224 Test vectors\n");

    sha224((const unsigned char *) message1, strlen(message1), digest);
    test(vectors[0][0], digest, SHA224_DIGEST_SIZE);
    sha224((const unsigned char *) message2a, strlen(message2a), digest);
    test(vectors[0][1], digest, SHA224_DIGEST_SIZE);
    sha224(message3, message3_len, digest);
    test(vectors[0][2], digest, SHA224_DIGEST_SIZE);
    printf("\n");

    printf("SHA-256 Test vectors\n");

    sha256((const unsigned char *) message1, strlen(message1), digest);
    test(vectors[1][0], digest, SHA256_DIGEST_SIZE);
    sha256((const unsigned char *) message2a, strlen(message2a), digest);
    test(vectors[1][1], digest, SHA256_DIGEST_SIZE);
    sha256(message3, message3_len, digest);
    test(vectors[1][2], digest, SHA256_DIGEST_SIZE);
    printf("\n");

    printf("SHA-384 Test vectors\n");

    sha384((const unsigned char *) message1, strlen(message1), digest);
    test(vectors[2][0], digest, SHA384_DIGEST_SIZE);
    sha384((const unsigned char *)message2b, strlen(message2b), digest);
    test(vectors[2][1], digest, SHA384_DIGEST_SIZE);
    sha384(message3, message3_len, digest);
    test(vectors[2][2], digest, SHA384_DIGEST_SIZE);
    printf("\n");

    printf("SHA-512 Test vectors\n");

    sha512((const unsigned char *) message1, strlen(message1), digest);
    test(vectors[3][0], digest, SHA512_DIGEST_SIZE);
    sha512((const unsigned char *) message2b, strlen(message2b), digest);
    test(vectors[3][1], digest, SHA512_DIGEST_SIZE);
    sha512(message3, message3_len, digest);
    test(vectors[3][2], digest, SHA512_DIGEST_SIZE);
    printf("\n");

    printf("All tests passed.\n");
    return 0;
}

 

发布了106 篇原创文章 · 获赞 9 · 访问量 4万+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章