Unity shader 官網文檔全方位學習(一)

What?? Shader,看起來好高級的樣子,是的,這是Unity中高級進階的必備。因此,兄弟我就在此記下我學習官網的一些心得。

此爲一。主要介紹些Surface Shaders的知識。具體的大家也可去官網(如下)學習。

http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaders.html

一、概念篇

1.基準:unity裏的shader並不是一門獨特的語言,而是一種代碼生成方式,且可將低層次且複雜的shader編程進行簡化。但同時你也還是得使用Cg/HLSL來寫的。

2.原理:寫一個函數,以UVs或者一些數據爲入口,然後以SurfaceOutput爲輸出。同時在SurfaceOutput這個結構體裏還有不同的屬性。這樣對於這個函數來說,他的執行過程會生成vertex和pixel的Shader,並且傳遞一些渲染的路徑。

3.結構:輸出結構:

struct SurfaceOutput {
    half3 Albedo;
    half3 Normal;
    half3 Emission;
    half Specular;
    half Gloss;
    half Alpha;
};

Albedo,是漫反射的顏色值。
Normal,法線座標
Emission,自發光顏色
Specular,鏡面反射係數
Gloss,光澤係數
Alpha,透明度係數

二、編程規則

1.要寫在CGPROGRAM..ENDCG的SubShader的塊裏。不可寫在Pass裏。

2.shader的名字是可以重複的,重複後,以後來的shader爲主。

3.指令詳細:

	
#pragma surface surfaceFunction lightModel [optionalparams]

=>surfaceFunction,沒什麼好說,肯定是函數名了。

=>lightModel是所採用的光照模型。可以自己寫也可使用內置如Lambert和BlinnPhong.

=>optionalparams:可選參數,一堆可選包括透明度,頂點與顏色函數,投射貼花shader等等。具體用到可以細選。

另外這裏有一個功能。在Surface shader的CGPROGRAM裏添加 #pragma debug [內容]。可在編譯結果的文件中看到。寫多少都行。但嘗試在其他種shader下不行。

三、實例學習:

1.Simple: 

Shader "Example/Diffuse Simple" {      
    SubShader {     
    Tags { "RenderType" = "Opaque" }    
    CGPROGRAM
    #pragma surface surf Lambert     
    struct Input {    float4 color : COLOR;     };  
    void surf (Input IN, inout SurfaceOutput o) {
           o.Albedo = 1;   
    }     
    ENDCG   
    }       
    Fallback "Diffuse" }

第一個。行行來:

第一行:寫個名字。這也有講究的。斜線左邊爲其父類的組,無則新增,有則累加,右邊纔是真正的名字。注意,這些shader名不像C#腳本,無需文件名與shader名相同。

第二、三行:接下來就在SubShader裏添加內容,SubShader是可以有多個的。然後上一個Tags,此處只用到RenderType這種,另外的還有Rendering order, ForceNoShadowCasting..等。這些本階段暫不研究。

第四行:上一條指令,裏面指定響應方法爲surf且採用Lambert的光照模型。這個必須有的。

第五行:這個結構體,記得名字不能改,只能爲Input。裏面一個四元素的顏色值(RGBA)。

第七到第九行:第一個參數,純輸入的上述結構體參數。第二個參數,inout標識,意思是可爲輸入參數也可爲輸出參數。Albedo根據前面介紹到的,是一個rgb的值,如果給一個1,其實就是float3(1,1,1),就是反射出來的顏色爲白色,如果爲100,則是加強反射強度,並不會改變其顏色。爲0或爲負數時道理類似。

最後Fallback,後方的是自帶的shader,可以用自己自定義好的。這裏這句的意思是,如果所有subshader在當前顯卡都不支持,則默認返回自帶的Diffuse。

2.Texture:

Shader "Example/Diffuse Texture"
{     Properties { _MainTex ("Texture", 2D) = "white" {} }     SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert
      struct Input { float2 uv_MainTex; };       sampler2D _MainTex;       
      void surf (Input IN, inout SurfaceOutput o) {
          o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
      }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這個例子呢。其實只是第一個的基礎上添加了一個2D屬性顯示名爲Texture。以下解析:

第一個黑體:添加一個名叫_MainTex的屬性,指定其爲2D類型且顯示爲Texture。"white"那塊可不是亂寫的,是unity的build-in的一些textures的名稱,而不是單純顏色名字。意思是當默認時顯示爲名叫white的材質。如改成red(即使用名叫red的材質,如果有其他也可叫其名字),則效果如下:

第二個黑體:uv_MainTex。這其中大有玄機,uv開頭指代後方材質的uv值,因此uv不變,後面的可以根據開頭起的名字動態換。還有哦,這種類似於_MainTex的命名方式是CG推薦的,其實不用下劃線也OK的。

第三個黑體:這個Sampler2D,可以理解爲引用一個2D Texture。因爲下面的Tex2D函數需要這種類型。所以說這個後面的名字要與Properties裏的對應一樣才行。

第四個黑體:Tex2D,這玩意就是根據對應材質上所有的點找指定 2DSample上的Texture信息,此處需要其RGB信息,就打出來賦給了其反射值。所以對有材質圖的情況下,要顯示出圖,還是要相應的反射其原圖的rgb值。

3.Normal mapping

Shader "Example/Diffuse Bump" {
    Properties {
      _MainTex (
        "Texture", 2D) = "white" {}      
         _BumpMap ("Bumpmap", 2D) = "bump" {}   
    }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert
      struct Input {
        float2 uv_MainTex;
        float2 uv_BumpMap;
      };
      sampler2D _MainTex;       
      sampler2D _BumpMap;      
     void surf (Input IN, inout SurfaceOutput o) {
        o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;       
          o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));     
      }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這個例子里加了個凹凸貼圖,可實現類似一些很漂亮的凹凸效果。

第一個黑體:加一個2D類型的材質,默認爲bump。(即帶有凹凸效果的)。

第二個黑體:上一個採集器。採集下來上面的材質。

第三個黑體:有講究,這個UnpackNormal是unity自帶的標準解壓法線用的,所謂解壓,我暫時學習到的只是將法線的區間進行變換。由於tex2D(_BumpMap, IN.uv_BumpMap)取出的是帶壓縮的[0,1]之間,需要轉成[-1,1]。這個函數會針對移動平臺或OPENGL ES平臺採用 RGB法線貼圖,其他採用DXT5nm貼圖。爲此也可自己寫。也在網上找到了一些資料,如下參考:

//  Shader: 帶法線貼圖的Surface Shader
//  Author: 風宇衝
Shader "Custom/3_NormalMap" {
  Properties
  {
    _MainTex ("Texture", 2D) = "white" {}
    _NormalMap ("NormalMap", 2D) = "white" {}
  }
  Subshader
  {
  CGPROGRAM
  #pragma surface surf BlinnPhong
  struct Input
  {
  float2 uv_MainTex;
  };
  //法線範圍轉換:單位法線 float3(x,y,z),x,y,z的取值範圍是 [-1,1]。在法線貼圖中被壓縮在顏色的範圍[0,1]中,所以需要轉換
  //(1)RGB法線貼圖
  float3 expand(float3 v) { return (v - 0.5) * 2; }
  //(2)DXT5nm法線貼圖
  float3 expand2(float4 v)
{
fixed3 normal;
normal.xy = v.wy * 2 - 1;
normal.z = sqrt(1 - normal.x*normal.x - normal.y * normal.y);
return normal;
}
  sampler2D _MainTex;
  sampler2D _NormalMap;
  void surf(Input IN,inout SurfaceOutput o)
  {
  half4 c = tex2D(_MainTex, IN.uv_MainTex);
  o.Albedo = c.rgb;
  o.Alpha = c.a;
//對法線貼圖進行採樣,取得壓縮在顏色空間裏的法線([0,1])
  float4 packedNormal = tex2D(_NormalMap, IN.uv_MainTex);
  //要將顏色空間裏的法線[0,1],轉換至真正3D空間裏的法線範圍[-1,1]
  //注意:範圍基本都是從[0,1]轉換至[-1,1].主要是圖的通道與法線xyz的對應關係要根據法線貼圖格式而定
  //UnpackNormal, UnityCG.cginc裏的函數
  //o.Normal = UnpackNormal(packedNormal);
  //expand,標準法線解壓函數
  o.Normal = expand(packedNormal.xyz);
  }
  ENDCG
  }
}

4.Rim Lighting 

Shader "Example/Rim" {
    Properties {
      _MainTex ("Texture", 2D) = "white" {}
      _BumpMap ("Bumpmap", 2D) = "bump" {}        _RimColor ("Rim Color", Color) = (0.26,0.19,0.16,0.0)//1        _RimPower ("Rim Power", Range(0.5,8.0)) = 3.0 //2     }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert
      struct Input {
          float2 uv_MainTex;
          float2 uv_BumpMap; float3 viewDir; //3      };
      sampler2D _MainTex;
      sampler2D _BumpMap;       float4 _RimColor;//4       float _RimPower;//5 void surf (Input IN, inout SurfaceOutput o) {
          o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
          o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));             half rim = 1.0 - saturate(dot (normalize(IN.viewDir), o.Normal));//6         o.Emission = _RimColor.rgb * pow (rim, _RimPower);//7 }
      ENDCG
    } 
    Fallback "Diffuse"

新增的一些東西,我都用數字標註了。以下進行詳細解讀:

第一處(//1):上一個Color類型的顯示爲Rim Color的變量。顏色值RGBA對應0.26,0.19,0.16,0.0

第二處(//2):這個Range類型的變量,結果還是一個float。只是這個float是在這個range之內。爲什麼這麼定義呢。如果超多,或過小,則使用range內指明的值代替。

第三處(//3):viewDir 意爲World Space View Direction。就是當前座標的視角方向。這裏有個從相關網上找的圖:鏈接:http://game.ceeger.com/forum/read.php?tid=11367

第四、五處(//4,//5):定義兩個變量對應properties裏的值,取出使用。

第六、七處:最裏層是Normalize函數,用於獲取到的viewDir座標轉成一個單位向量且方向不變,外面再與點的法線做點積。最外層再用saturate算出一[0,1]之間的最靠近(最小值但大於所指的值)的值。這樣算出一個rim邊界。爲什麼這麼做。原理以下解釋:

=>看圖。

=>這裏o.Normal就是單位向量。外加Normalize了viewDir。因此求得的點積就是夾角的cos值。

=>因爲cos值越大,夾角越小,所以,這時取反來。這樣,夾角越大,所反射上的顏色就越多。於是就得到的兩邊發光的效果。哈哈這樣明瞭吧。

這裏介紹一下這個half。CG裏還有類似的float和fixed。half是一種低精度的float,但有時也會被選擇成與float一樣的精度。fragment是一定會支持fixed類型,同時也會有可能將其精度設成與float一樣,這個比較複雜,後面篇章學到fragment時再深入探討。

以下爲與3的對比,大家一下就知道誰是用了rim color的吧。對!下面那個盒子就是用些shader的效果。

5.Detail Texture

Shader "Example/Detail" {
    Properties {
      _MainTex ("Texture", 2D) = "white" {}
      _BumpMap ("Bumpmap", 2D) = "bump" {}       _Detail ("Detail", 2D) = "gray" {}     }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert
      struct Input {
          float2 uv_MainTex;
          float2 uv_BumpMap;           
          float2 uv_Detail;       
      };
      sampler2D _MainTex;
      sampler2D _BumpMap;      
      sampler2D _Detail;      
     void surf (Input IN, inout SurfaceOutput o) {
          o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;          
          o.Albedo *= tex2D (_Detail, IN.uv_Detail).rgb * 2;           
          o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
      }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這個最好理解了。

前面三個一樣。上一個2D Texture。

最後一個黑體:在原先的反射基礎上,在加一層,Texture的反射。

就是這樣啦。最後上幾個截圖,大家一定就明白。

6.Detail Texture in Screen Space

Shader "Example/ScreenPos" {
    Properties {
      _MainTex ("Texture", 2D) = "white" {}
      _Detail ("Detail", 2D) = "gray" {}
    }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert
      struct Input {
          float2 uv_MainTex; float4 screenPos; };
      sampler2D _MainTex;
      sampler2D _Detail;
      void surf (Input IN, inout SurfaceOutput o) {
          o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;           float2 screenUV = IN.screenPos.xy / IN.screenPos.w; //2          screenUV *= float2(8,6);          o.Albedo *= tex2D (_Detail, screenUV).rgb * 2;       }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這個比較有趣,是從上個例子的基礎上將第二層疊加上的2D Texture根據當前屏幕的UV進行疊加,而不是根據自身的UV。這樣帶有含此shader材質的物體的貼圖就會跟着移動到的位置而變換圖片。

這裏只需要說三點:

1.關於screenPos:screenPos是一個三維點,但是用齊次座標的形式表示出來就是(x,y,z,w),根據齊次座標的性質。(x,y,z,w)的齊次座標對應三維點(x/w,y/w,z/w)。因此把w值除掉可以看來是一種Normalize的作法,這樣就取出了實際的屏幕xy的UV值。

2.對screenUV進行倍剩:此處剩float2(8,6)意爲將原獲取到屏幕尺寸進行拉大的倍數。即x軸拉大8倍,y軸拉大6倍。

3.如何就平鋪了剛好一行8個,一列6個了呢? 原因我覺得是在於2d Texture自己是按Normalize後進行鋪的,因此在//2(剛轉完標準的)screenPos後,將其剩多少即便將原圖鋪多少張。

OK。明瞭。其實這個東西可以拿來做放大鏡的應用。上圖:

7. Cubemap reflection

Shader "Example/WorldRefl" {
    Properties {
      _MainTex (
        "Texture", 2D) = "white" {}         _Cube ("Cubemap", CUBE) = "" {}     }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert
      struct Input {
           float2 uv_MainTex;            float3 worldRefl;       };
      sampler2D _MainTex;       samplerCUBE _Cube;       void surf (Input IN, inout SurfaceOutput o) {
          o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb * 0.5;           o.Emission = texCUBE (_Cube, IN.worldRefl).rgb;       }
      ENDCG
    } 
    Fallback "Diffuse"
  }

Shader "Example/WorldRefl Normalmap" {
    Properties {
      _MainTex ("Texture", 2D) = "white" {}
      _BumpMap ("Bumpmap", 2D) = "bump" {}
      _Cube ("Cubemap", CUBE) = "" {}
    }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert
      struct Input {
          float2 uv_MainTex;
          float2 uv_BumpMap;
          float3 worldRefl; INTERNAL_DATA };
      sampler2D _MainTex;
      sampler2D _BumpMap;
      samplerCUBE _Cube;
      void surf (Input IN, inout SurfaceOutput o) {
          o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb * 0.5;
          o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
          o.Emission = texCUBE (_Cube, WorldReflectionVector (IN, o.Normal)).rgb;
      }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這兩段都是加一個cubemap的反射。第二段相比之下是在有normal反射的基礎上加的。Cubemap這東西,可設置幾種面的不能渲染圖,這方面可用於做天空盒。因爲這樣可以從各個角度看過去以顯示不同的渲染效果。

以下說明:

1. worldRefl:即爲世界空間的反射向量。

2. texCUBE:將反射向量一個個的往_Cube反射盒上找出然後做爲Emission反射出來。

3. 第二個例子只是將其用在Normal反射後,這樣一定要多添加一個INTERNAL_DATA的屬性,另外也需用到WorldReflectionVectore方法取其利用Normal後的反射向量值。

類似於的效果,可見官網中的。我這也有一個,有點像打了光的樣子。

8.Slices via World Space Position

Shader "Example/Slices" {
   Properties {
     _MainTex ("Texture", 2D) = "white" {}
     _BumpMap ("Bumpmap", 2D) = "bump" {}
   }
   SubShader {
     Tags { "RenderType" = "Opaque" }      
     Cull Off       
     CGPROGRAM
     #pragma surface surf Lambert
     struct Input {
         float2 uv_MainTex;
         float2 uv_BumpMap;          
         float3 worldPos;       
     };
     sampler2D _MainTex;
     sampler2D _BumpMap;
     void surf (Input IN, inout SurfaceOutput o) {       
         clip (frac((IN.worldPos.y+IN.worldPos.z*0.1) * 5) - 0.5);           o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
         o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
     }
     ENDCG
   } 
   Fallback "Diffuse"
 }

在看完這段後,我自己另外又加一段,以作對比:

float3 _tWorldPos;
void surf (Input IN, inout SurfaceOutput o) {       
     _tWorldPos = IN.screenPos.xyz / IN.screenPos.w;
     //clip (frac((IN.worldPos.y+IN.worldPos.z*0.1) * 5) - 0.5); 
     clip (frac((_tWorldPos.y+_tWorldPos.z*0.1) * 3) - 0.5);
     o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
     o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
}

第二個黑體:frac是取小數的函數,如1.23 取出來是 0.23。clip函數用於清Pixel的,負值情況下才進行清pixel。且越小,即絕對值越大則清越多。 這裏注意那個* 5,仔細一想,如果frac出來的值越大,-0.5值就越大,絕對值就越小,因此這樣清掉的pixel越少,所以就可以間接的增加分段的次數。那爲什麼要+IN.worldPos.z*0.1呢,主要原因就是空開的斷添加一個傾斜角度,可以用空間思想想下。

我的那段,就是將要clip的座標換掉,換成屏幕的。這樣你移動物體時,clip掉的部分會變化。

最後,上下效果圖:

9.Normal Extrusion with Vertex Modifier

Shader "Example/Normal Extrusion" {
    Properties {
      _MainTex ("Texture", 2D) = "white" {}       _Amount ("Extrusion Amount", Range(-1,1)) = 0.5     }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert vertex:vert //1
      struct Input {
          float2 uv_MainTex;
      };       float _Amount; //2       void vert (inout appdata_full v) { //3          v.vertex.xyz += v.normal * _Amount;  //4       }       sampler2D _MainTex;
      void surf (Input IN, inout SurfaceOutput o) {
          o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
      }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這是個自定義vertex的例子,效果可以實現點座標的放大縮小,以形成肥仔與瘦棍的效果,哈哈。

第一個黑體(//1):添加一個可選參數爲vertex,主要是爲了給其添加一個函數vert。

第二個黑體(//2):這個_Amount對應開頭的那個屬性_Amount。具體是個Range值,可在shader界面外通過滑動條改變這個值。默認爲0.5。

第三個黑體(//3):這裏除了之前學過的東西外,多了個appdata_full的結構體。這裏面的結構(載自UNITY官方論壇)如下:

struct appdata_full {
    float4 vertex : POSITION;
    float4 tangent : TANGENT;
    float3 normal : NORMAL;
    float4 texcoord : TEXCOORD0;
    float4 texcoord1 : TEXCOORD1;
    fixed4 color : COLOR;
#if defined(SHADER_API_XBOX360)
    half4 texcoord2 : TEXCOORD2;
    half4 texcoord3 : TEXCOORD3;
    half4 texcoord4 : TEXCOORD4;
    half4 texcoord5 : TEXCOORD5;
#endif
};

第四個黑體(//4):就是像爲個點,換當前法線向量的指定倍數進行擴展。

上效果:

10.Custom data computed per-vertex

Shader "Example/Custom Vertex Data" {
    Properties {
      _MainTex ("Texture", 2D) = "white" {}
    }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert vertex:vert       struct Input {
          float2 uv_MainTex;           
          float3 customColor;      //1
        };
      void vert (inout appdata_full v, out Input o) {//2
            UNITY_INITIALIZE_OUTPUT(Input,o);           //3 
            o.customColor = abs(v.normal);       //4
      }
      sampler2D _MainTex;
      void surf (Input IN, inout SurfaceOutput o) {
          o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
          o.Albedo *= IN.customColor;     //5
      }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這個例子是用來渲染顏色的。我的分析如下:

第一處(//1):取一個顏色值,float3,對應RGB。

第二處(//2):較前個例子,多一個Input類型的參數,只爲輸出使用。

第三處(//3):UNITY_INITIALIZE_OUTPUT(type,name)這個函數大有用處,主要是將叫[name]的變量請空改成type類型。以下是從HLSLSupport.cginc裏找到的定義:

#if defined(UNITY_COMPILER_HLSL)
#define UNITY_INITIALIZE_OUTPUT(type,name) name = (type)0;
#else
#define UNITY_INITIALIZE_OUTPUT(type,name)
#endif

第四處(//4):RGB顏色值當然只能爲正值,所以使用絕對值去取normal的值。

第五處(//5):在原先已經渲染上texture顏色值的基礎上,加上這層自定義的顏色值。

上效果:

11.Final Color Modifier

Shader "Example/Tint Final Color" {
    Properties {
      _MainTex (
        "Texture", 2D) = "white" {}
         _ColorTint ("Tint", Color) = (1.0, 0.6, 0.6, 1.0)       }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert finalcolor:mycolor        struct Input {
          float2 uv_MainTex;
      };       fixed4 _ColorTint;       void mycolor (Input IN, SurfaceOutput o, inout fixed4 color) {
           color *= _ColorTint;       }
      sampler2D _MainTex;
      void surf (Input IN, inout SurfaceOutput o) {
           o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
      }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這個例子是跟上面例子的對比,前種使用普通反射進行疊加上顏色,此處則是直接使用finalcolor對其顏色進行處理,這種可以處理整個模型的固定顏色值的渲染。以下做簡要的分析:

1.finalcolor:mycolor :這個是另一種可選參數,就是用戶自定義的顏色處理函數。函數名爲mycolor.

2.mycolor函數:注意到函數除了有surf的兩個參數外,還多了個顏色參數,這個顏色參數就是當前模型上顏色對象,對他的更改將直接影響全部來自於lightmap,light probe和一些相關資源的顏色值。

效果:

12.Custom Fog with Final Color Modifier

Shader "Example/Fog via Final Color" {
    Properties {
      _MainTex ("Texture", 2D) = "white" {}       _FogColor ("Fog Color", Color) = (0.3, 0.4, 0.7, 1.0)     }
    SubShader {
      Tags { "RenderType" = "Opaque" }
      CGPROGRAM
      #pragma surface surf Lambert finalcolor:mycolor vertex:myvert       
      struct Input {
          float2 uv_MainTex;         
          half fog;      
      };
      void myvert (inout appdata_full v, out Input data)
      {         
          UNITY_INITIALIZE_OUTPUT(Input,data);         
          float4 hpos = mul (UNITY_MATRIX_MVP, v.vertex);//1       
          data.fog = min (1, dot (hpos.xy, hpos.xy) * 0.1); //2  
      }
      fixed4 _FogColor;
      void mycolor (Input IN, SurfaceOutput o, inout fixed4 color)
      {       
            fixed3 fogColor = _FogColor.rgb;       
            #ifdef UNITY_PASS_FORWARDADD   //3                    
               fogColor = 0;        //3      
            #endif          //3
            color.rgb = lerp (color.rgb, fogColor, IN.fog);   //4       }
      sampler2D _MainTex;
      void surf (Input IN, inout SurfaceOutput o) {
           o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;
      }
      ENDCG
    } 
    Fallback "Diffuse"
  }

這個很高難度,裏面還有些之前沒用到過的函數,以下是我的理解:

第一處(//1):mul是矩陣相乘的函數。UNITY_MATRIX_MVP是model、view、projection三個矩陣相乘出來的4x4的矩陣。v.vertex是一個float4的變量,可理解成4x1的矩陣,兩者相乘,則得出一個float4,這個值就是視角窗口的座標值,這個座標就跟camera的關聯了。

第二處(//2):這個fog的浮點值就是其強度,範圍一般在-1到1之間,說一般,只是我個人建議的值,設成其他也行,只是沒多大意義。越負就越黑。再看後面這個點積,這個仔細一想,不難理解,其實就是爲了達到一種擴散的效果,因此兩個一樣的向量相乘,其實就是直接對座標做平方擴展,這樣fog就更有霧的感覺。

第三處(//3):這個宏不好找,就看官方對這個例子的解釋爲正向渲染時的額外通道。字面不好理解,多多嘗試過可以有所發現,其實就是在霧氣漸漸消失處那塊額外的渲染區。可以將fogColor = 0; 改成fogColor = fixed3(1,0,0)。外面霧氣顏色再選成白色,效果則如下:



霧氣改成綠色後:效果如下:

第四處(//4):lerp函數是個有趣的函數。第一個參數是左邊界,第二個參數是右邊界,第三個相當於一個值介於0到1之間的遊標。遊標爲0,則爲左邊界,爲1爲右邊界,取中間值則是以此類推,取插值。其實也可以把它看成百分比。這裏的fog則可以看來那個遊標,值越大,則越接近fogColor,越小越接近原色。

原shader所出來的效果再來張:

13.Linear Fog

Shader "Example/Linear Fog"{  
  Properties {
    _MainTex ("Base (RGB)", 2D) = "white" {}
  }
  SubShader {
    Tags { "RenderType"="Opaque" }
    LOD 200  //1
 
    CGPROGRAM
    #pragma surface surf Lambert finalcolor:mycolor vertex:myvert
 
    sampler2D _MainTex;
    uniform half4 unity_FogColor;  //2
    uniform half4 unity_FogStart;
    uniform half4 unity_FogEnd;
 
    struct Input {
      float2 uv_MainTex;
      half fog;
    };
 
    void myvert (inout appdata_full v, out Input data) {
      UNITY_INITIALIZE_OUTPUT(Input,data);
      float pos = length(mul (UNITY_MATRIX_MV, v.vertex).xyz); //3
      float diff = unity_FogEnd.x - unity_FogStart.x; //4
      float invDiff = 1.0f / diff;  //5
      data.fog = clamp ((unity_FogEnd.x - pos) * invDiff, 0.0, 1.0); //6
    }
    void mycolor (Input IN, SurfaceOutput o, inout fixed4 color) {
      fixed3 fogColor = unity_FogColor.rgb;
      #ifdef UNITY_PASS_FORWARDADD
      fogColor = 0;
      #endif
      color.rgb = lerp (fogColor, color.rgb, IN.fog);
    }
 
    void surf (Input IN, inout SurfaceOutput o) {
      half4 c = tex2D (_MainTex, IN.uv_MainTex);
      o.Albedo = c.rgb;
      o.Alpha = c.a;
    }
    ENDCG
  } 
  FallBack "Diffuse"
}

這個官方只貼出了代碼,無任何解釋。網上也未曾看到有人解答,在此爲大家分析下。其實這個與上面那個例子相比之下,採用的fog的源頭變了,這裏是獲取rendersettings裏的fog來設置Fog的顏色、強度與起點終點等。以下進行解析:

第一處(//1):LOD 200,200是個代號,設成此的目的就是限制shader級別只到200爲止,高過200的不採用,即使顯卡支持,也不會使用高過200的shader級別的渲染方式。官方的解釋:http://docs.unity3d.com/Documentation/Components/SL-ShaderLOD.html

第二處(//2):此處標記uniform的意圖就是讓Cg可以使用此變量。因此這三個uniform變量均來自於RenderSetting中。你可以預先設置好三個值。

第三處(//3):length函數用於取一個向量的長度,如果是float3則採取如下形式:

float length(float3 v)
{
    return sqrt(dot(v,v));
}

就是點積取平方根。

第四處(//4):計算fog起終點間的反差。

第五處(//5):將4中算得的diff置反過來。

第六處(//6):則將算出來的離視角的距離與0到1之間進行比對,小於0則爲0,大於1則爲1,範圍之內就是其原值,總的來說,利用clamp函數防止其出界。

分析下原理:咱們先將rendersetting裏的顏色設成紅色,fog start 設成0, fog end設成50。
這時算出的diff = 50, invdiff = 1/50。將原fog的計算稍做簡化,得出如下結果:

fog = clamp((1 - pos/50) , 0 , 1);這個式子很是明瞭,pos是距離,即距離越遠,clamp裏值越小,根據後面這句:

color.rgb = lerp (fogColor, color.rgb, IN.fog);

我們就可以判斷出其越靠近fogColor,霧氣就會越重。

最後上個效果圖:這裏選的是Linear的fog。

到此,所有的surface shader的官方例子都詳細的介紹完了。哎,開源中國對cg無什麼代碼顯示支持,大家要代碼看不清,可以直接去官網上去面看。

http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderExamples.html

這裏送上本文的項目工程:http://pan.baidu.com/s/1xindN

四、學習技巧

這裏是我個人的一些觀點:

1.遇問題先找官網,找官網論壇,找官網文檔。

2.學會從軟件根目錄下的CGIncludes文件夾下找相關的函數宏定義。

3.積累相關線性代數與計算機圖形學的知識,學習會更輕鬆些。


發佈了54 篇原創文章 · 獲贊 17 · 訪問量 28萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章