Pytorch學習筆記【14】:自編碼(autoencoder)

一. 什麼是自編碼

      自編碼是什麼呢?就是說假如我們需要訓練的數據量非常大,那麼 神經網絡的壓力是很大的,所以我們可以 將其壓縮一下,再解壓,通過對比解壓之後的和原來的 數據,反向傳播去訓練,訓練好之後,我們再需要 用到這批數據,就 只需用壓縮之後的數據即可,這樣就大大減小了神經網絡的訓練壓力,增加了訓練效率。看下圖就明白了:

                     

                    

 

二. 簡單自編碼模型實現(以手寫數字數據集爲例子)

   1. 代碼

import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

# 定義一些參數
EPOCH = 10
BATCH_SIZE = 64
LR = 0.005
DOWNLOAD_MNIST = False
N_TEST_IMG = 5

# 加載數據集
train_data = torchvision.datasets.MNIST(
    root = './mnist', # 數據集下載目錄
    train=True, # 下載訓練集
    transform=torchvision.transforms.ToTensor(), # 轉換成Tensor數據
    download=DOWNLOAD_MNIST, # 這裏我定義爲False,因爲我已經有這個數據集了,你沒有的話,要設置爲True
)

# 畫出一個例子
# print(train_data.train_data.size())     # (60000, 28, 28)
# print(train_data.train_labels.size())   # (60000)
# plt.imshow(train_data.train_data[2].numpy(), cmap='gray')
# plt.title('%i' % train_data.train_labels[2])
# plt.show()

# 加載數據集
train_loader = Data.DataLoader(dataset=train_data,batch_size=BATCH_SIZE,shuffle=True)

class AutoEncoder(nn.Module):
    def __init__(self):
        super(AutoEncoder, self).__init__()

        # 定義壓縮層
        self.encoder = nn.Sequential(
            nn.Linear(28*28,128),
            nn.Tanh(),
            nn.Linear(128,64),
            nn.Tanh(),
            nn.Linear(64,12),
            nn.Tanh(),
            nn.Linear(12,3),
        )
        # 定義解碼
        self.decoder = nn.Sequential(
            nn.Linear(3,12),
            nn.Tanh(),
            nn.Linear(12,64),
            nn.Tanh(),
            nn.Linear(64,128),
            nn.Tanh(),
            nn.Linear(128,28*28),
            nn.Sigmoid(), # 使它在(0,1)的範圍裏面
        )
    def forward(self,x):
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return encoded,decoded

autoencoder = AutoEncoder()

optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
loss_func = nn.MSELoss()

# initialize figure
f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
plt.ion()   # continuously plot

# original data (first row) for viewing
view_data = train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
for i in range(N_TEST_IMG):
    a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())

for epoch in range(EPOCH):
    for step, (x, b_label) in enumerate(train_loader):
        # b_x和b_y實際上是同樣的數據,就是用x去壓縮再解碼看和原來的x的差別,再反向傳播進行訓練。
        b_x = x.view(-1, 28*28)   # batch x, shape (batch, 28*28)
        b_y = x.view(-1, 28*28)   # batch y, shape (batch, 28*28)

        encoded, decoded = autoencoder(b_x)

        loss = loss_func(decoded, b_y)      # mean square error
        optimizer.zero_grad()               # clear gradients for this training step
        loss.backward()                     # backpropagation, compute gradients
        optimizer.step()                    # apply gradients

        if step % 100 == 0:
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())

            # plotting decoded image (second row)
            _, decoded_data = autoencoder(view_data)
            for i in range(N_TEST_IMG):
                a[1][i].clear()
                a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
                a[1][i].set_xticks(()); a[1][i].set_yticks(())
            plt.draw(); plt.pause(0.05)

plt.ioff()
plt.show()

# visualize in 3D plot
view_data = train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
encoded_data, _ = autoencoder(view_data)
fig = plt.figure(2); ax = Axes3D(fig)
X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
values = train_data.train_labels[:200].numpy()
for x, y, z, s in zip(X, Y, Z, values):
    c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
plt.show()

   2. 運行結果

               

              

             

發佈了234 篇原創文章 · 獲贊 71 · 訪問量 1萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章