Java泛型

泛型類型的提出

public class GenericTest {

    public static void main(String[] args) {
        List list = new ArrayList();
        list.add("qqyumidi");
        list.add("corn");
        list.add(100);

        for (int i = 0; i < list.size(); i++) {
            String name = (String) list.get(i); // 1
            System.out.println("name:" + name);
        }
    }
}

定義了一個List類型的集合,先向其中加入了兩個字符串類型的值,隨後加入一個Integer類型的值。這是完全允許的,因爲此時list默認的類型爲Object類型。在之後的循環中,由於忘記了之前在list中也加入了Integer類型的值或其他編碼原因,很容易出現類似於//1中的錯誤。因爲編譯階段正常,而運行時會出現“java.lang.ClassCastException”異常。因此,導致此類錯誤編碼過程中不易發現。
在如上的編碼過程中,我們發現主要存在兩個問題:
1.當我們將一個對象放入集合中,集合不會記住此對象的類型,當再次從集合中取出此對象時,改對象的編譯類型變成了Object類型,但其運行時類型任然爲其本身類型。
2.因此,//1處取出集合元素時需要人爲的強制類型轉化到具體的目標類型,且很容易出現“java.lang.ClassCastException”異常。

那麼有沒有什麼辦法可以使集合能夠記住集合內元素各類型,且能夠達到只要編譯時不出現問題,運行時就不會出現“java.lang.ClassCastException”異常呢?答案就是使用泛型。

二.什麼是泛型?

泛型,即“參數化類型”。一提到參數,最熟悉的就是定義方法時有形參,然後調用此方法時傳遞實參。那麼參數化類型怎麼理解呢?顧名思義,就是將類型由原來的具體的類型參數化,類似於方法中的變量參數,此時類型也定義成參數形式(可以稱之爲類型形參),然後在使用/調用時傳入具體的類型(類型實參)。

 看着好像有點複雜,首先我們看下上面那個例子採用泛型的寫法。

public class GenericTest {

    public static void main(String[] args) {
        /*
        List list = new ArrayList();
        list.add("qqyumidi");
        list.add("corn");
        list.add(100);
        */

        List<String> list = new ArrayList<String>();
        list.add("qqyumidi");
        list.add("corn");
        //list.add(100);   // 1  提示編譯錯誤

        for (int i = 0; i < list.size(); i++) {
            String name = list.get(i); // 2
            System.out.println("name:" + name);
        }
    }
}

採用泛型寫法後,在//1處想加入一個Integer類型的對象時會出現編譯錯誤,通過List<String>,直接限定了list集合中只能含有String類型的元素,從而在//2處無須進行強制類型轉換,因爲此時,集合能夠記住元素的類型信息,編譯器已經能夠確認它是String類型了。

結合上面的泛型定義,我們知道在List<String>中,String是類型實參,也就是說,相應的List接口中肯定含有類型形參。且get()方法的返回結果也直接是此形參類型(也就是對應的傳入的類型實參)。下面就來看看List接口的的具體定義:

public interface List<E> extends Collection<E> {

    int size();

    boolean isEmpty();

    boolean contains(Object o);

    Iterator<E> iterator();

    Object[] toArray();

    <T> T[] toArray(T[] a);

    boolean add(E e);

    boolean remove(Object o);

    boolean containsAll(Collection<?> c);

    boolean addAll(Collection<? extends E> c);

    boolean addAll(int index, Collection<? extends E> c);

    boolean removeAll(Collection<?> c);

    boolean retainAll(Collection<?> c);

    void clear();

    boolean equals(Object o);

    int hashCode();

    E get(int index);

    E set(int index, E element);

    void add(int index, E element);

    E remove(int index);

    int indexOf(Object o);

    int lastIndexOf(Object o);

    ListIterator<E> listIterator();

    ListIterator<E> listIterator(int index);

    List<E> subList(int fromIndex, int toIndex);
}

我們可以看到,在List接口中採用泛型化定義之後,<E>中的E表示類型形參,可以接收具體的類型實參,並且此接口定義中,凡是出現E的地方均表示相同的接受自外部的類型實參。

自然的,ArrayList作爲List接口的實現類,其定義形式是:

public class ArrayList<E> extends AbstractList<E> 
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
    
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }
    
    public E get(int index) {
        rangeCheck(index);
        checkForComodification();
        return ArrayList.this.elementData(offset + index);
    }
    
    //...省略掉其他具體的定義過程

}
由此,我們從源代碼角度明白了爲什麼//1處加入Integer類型對象編譯錯誤,且//2處get()到的類型直接就是String類型了。

三.自定義泛型接口、泛型類和泛型方法

從上面的內容中,大家已經明白了泛型的具體運作過程。也知道了接口、類和方法也都可以使用泛型去定義,以及相應的使用。是的,在具體使用時,可以分爲泛型接口、泛型類和泛型方法。

自定義泛型接口、泛型類和泛型方法與上述Java源碼中的List、ArrayList類似。如下,我們看一個最簡單的泛型類和方法定義:

public class GenericTest {

    public static void main(String[] args) {

        Box<String> name = new Box<String>("corn");
        System.out.println("name:" + name.getData());
    }

}

class Box<T> {

    private T data;

    public Box() {

    }

    public Box(T data) {
        this.data = data;
    }

    public T getData() {
        return data;
    }

}
在泛型接口、泛型類和泛型方法的定義過程中,我們常見的如T、E、K、V等形式的參數常用於表示泛型形參,由於接收來自外部使用時候傳入的類型實參。那麼對於不同傳入的類型實參,生成的相應對象實例的類型是不是一樣的呢?
public class GenericTest {

    public static void main(String[] args) {

        Box<String> name = new Box<String>("corn");
        Box<Integer> age = new Box<Integer>(712);

        System.out.println("name class:" + name.getClass());      // com.qqyumidi.Box
        System.out.println("age class:" + age.getClass());        // com.qqyumidi.Box
        System.out.println(name.getClass() == age.getClass());    // true

    }

}

由此,我們發現,在使用泛型類時,雖然傳入了不同的泛型實參,但並沒有真正意義上生成不同的類型,傳入不同泛型實參的泛型類在內存上只有一個,即還是原來的最基本的類型(本實例中爲Box),當然,在邏輯上我們可以理解成多個不同的泛型類型。

究其原因,在於Java中的泛型這一概念提出的目的,導致其只是作用於代碼編譯階段,在編譯過程中,對於正確檢驗泛型結果後,會將泛型的相關信息擦出,也就是說,成功編譯過後的class文件中是不包含任何泛型信息的。泛型信息不會進入到運行時階段。

對此總結成一句話:泛型類型在邏輯上看以看成是多個不同的類型,實際上都是相同的基本類型。

泛型擦除 參數化類型

轉載:http://www.cnblogs.com/lwbqqyumidi/p/3837629.html

PECS
請記住PECS原則:生產者(Producer)使用extends,消費者(Consumer)使用super。
生產者使用extends
如果你需要一個列表提供T類型的元素(即你想從列表中讀取T類型的元素),你需要把這個列表聲明成< extends T>,比如List< extends Integer>,因此你不能往該列表中添加任何元素。
消費者使用super
如果需要一個列表使用T類型的元素(即你想把T類型的元素加入到列表中),你需要把這個列表聲明成< super T>,比如List< super Integer>,因此你不能保證從中讀取到的元素的類型。
即是生產者,也是消費者
如果一個列表即要生產,又要消費,你不能使用泛型通配符聲明列表,比如List<Integer>。
例子
請參考java.util.Collections裏的copy方法(JDK1.7):

發佈了217 篇原創文章 · 獲贊 39 · 訪問量 54萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章