多線程學習筆記3之ReentrantLock

比較LongAdder、AtomicLong、synchronized(Long)效率

public class AtomicVsSyncVsLongAdder {
    static long count2 = 0L;
    static AtomicLong count1 = new AtomicLong(0L);
    static LongAdder count3 = new LongAdder();

    public static void main(String[] args) throws Exception {
        Thread[] threads = new Thread[1000];

        for (int i = 0; i < threads.length; i++) {
            threads[i] =
                    new Thread(() -> {
                        for (int k = 0; k < 100000; k++) count1.incrementAndGet();
                    });
        }

        long start = System.currentTimeMillis();

        for (Thread t : threads) t.start();

        for (Thread t : threads) t.join();

        long end = System.currentTimeMillis();

        //TimeUnit.SECONDS.sleep(10);

        System.out.println("Atomic: " + count1.get() + " time " + (end - start));
        //-----------------------------------------------------------
        Object lock = new Object();

        for (int i = 0; i < threads.length; i++) {
            threads[i] =
                    new Thread(() -> {

                        for (int k = 0; k < 100000; k++)
                            synchronized (lock) {
                                count2++;
                            }
                    });
        }

        start = System.currentTimeMillis();

        for (Thread t : threads) t.start();

        for (Thread t : threads) t.join();

        end = System.currentTimeMillis();


        System.out.println("Sync: " + count2 + " time " + (end - start));


        //----------------------------------
        for (int i = 0; i < threads.length; i++) {
            threads[i] =
                    new Thread(() -> {
                        for (int k = 0; k < 100000; k++) count3.increment();
                    });
        }

        start = System.currentTimeMillis();

        for (Thread t : threads) t.start();

        for (Thread t : threads) t.join();

        end = System.currentTimeMillis();

        //TimeUnit.SECONDS.sleep(10);

        System.out.println("LongAdder: " + count1.longValue() + " time " + (end - start));

    }

    static void microSleep(int m) {
        try {
            TimeUnit.MICROSECONDS.sleep(m);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

這個小程序用了1000個線程,每個線程分別將值從0到100000遞增,然後計算所用的時間,結果如下圖所示

在這裏插入圖片描述

可以看到LongAdder效率最高,其次是AtomicLong,synchronize最慢
原因是AtomicLong是CAS(無鎖)效率比synchronize高,而LongAdder是使用分段鎖,將1000個線程分成5份,200個線程一組去加值,最後將5個加起來的結果再相加,優勢是在線程較多的情況下效率比AtomicLong更高

可重入鎖 ReentrantLock

  • ReentrantLock是一種可重入鎖,跟synchronized作用差不多,但功能比synchronized要多,比如ReentrantLock可以設置等待時間,假如在指定時間內未拿到鎖,則會放棄,代碼如下
Lock lock = new ReentrantLock();

    void m1() {
        try {
            lock.lock();
            for (int i = 0; i < 10; i++) {
                TimeUnit.SECONDS.sleep(1);

                System.out.println(i);
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    /**
     * 使用tryLock進行嘗試鎖定,不管鎖定與否,方法都將繼續執行
     * 可以根據tryLock的返回值來判定是否鎖定
     * 也可以指定tryLock的時間,由於tryLock(time)拋出異常,所以要注意unclock的處理,必須放到finally中
     */
    void m2() {

        boolean locked = false;

        try {
            locked = lock.tryLock(5, TimeUnit.SECONDS);
            System.out.println("m2 ..." + locked);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            if(locked) lock.unlock();
        }

    }

    public static void main(String[] args) {
        ReentrantLockDemo2 rl = new ReentrantLockDemo2();
        new Thread(rl::m1).start();
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        new Thread(rl::m2).start();
    }

結果:m2 …false,如果將循環次數改爲4,則結果爲m2 …true

公平鎖 非公平鎖

ReentrantLock可以在構造的時候進行設置是否爲公平鎖,公平鎖不是絕對公平,而是相對公平,看代碼

public class ReentrantLockDemo3 extends Thread {

    //參數爲true表示爲公平鎖,請對比輸出結果
    private static ReentrantLock lock = new ReentrantLock(true);

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            lock.lock();
            try {
                System.out.println(Thread.currentThread().getName() + "獲得鎖");
            } finally {
                lock.unlock();
            }
        }
    }

    public static void main(String[] args) {
        ReentrantLockDemo3 rl = new ReentrantLockDemo3();
        Thread th1 = new Thread(rl);
        Thread th2 = new Thread(rl);
        th1.start();
        th2.start();
    }

結果是兩個線程基本交替打印

CountDownLatch 門栓

  • 是門栓,可以用在等待線程執行完畢後再進行業務的場景下,代碼如下
public class CountDownLatchDemo {

    public static void main(String[] args) {
        usingCountDown();
//        usingJoin();
    }


    private static void usingCountDown() {
        Thread[] threads = new Thread[100];

        CountDownLatch latch = new CountDownLatch(threads.length);

        for (int i = 0; i < threads.length; i++) {
            int finalI = i;
            threads[i] = new Thread(() -> {
                int result = 0;
                for (int j = 0; j < 100; j++) {
                    result += j;
                }
                System.out.println("thread " + finalI + " result = " + result);
                latch.countDown();
            });
        }
        for (Thread thread : threads) {
            thread.start();
        }

        try {
            // 這段代碼處於阻塞狀態,當100個線程都執行完畢的時候纔打印countDown end...
            latch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("countDown end...");
    }

    private static void usingJoin() {
        Thread[] threads = new Thread[100];

        for (int i = 0; i < threads.length; i++) {
            int finalI = i;
            threads[i] = new Thread(() -> {
                int result = 0;
                for (int j = 0; j < 100; j++) {
                    result += j;
                }
                System.out.println("thread " + finalI + " result = " + result);
            });
        }

        for (Thread thread1 : threads) {
            thread1.start();
        }

        for (Thread thread : threads) {
            try {
                thread.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        System.out.println("end join");
    }
}

CyclicBarrier 柵欄

  • 柵欄的作用是等待,等待線程達到一定數量的時候,推到,運行一段邏輯,請看下面的示例
public class CyclicBarrierDemo {

    public static void main(String[] args) {
        CyclicBarrier barrier = new CyclicBarrier(20, () -> System.out.println("滿人,發車"));

        for (int i = 0; i < 100; i++) {

            new Thread(() -> {
                try {
                    barrier.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }).start();
        }
    }
}

執行結果:就是打印5次 滿人,發車

讀寫鎖 ReadWriteLock

  • 讀鎖ReentrantReadWriteLock.WriteLock本質上是一把共享鎖
  • 寫鎖ReentrantReadWriteLock.ReadLock本質上是一把排它鎖

看下面一段程序,可以發現假如都是用共享鎖,大概需要20秒的時間才能執行完,但是當是用讀鎖和寫鎖,則大概只需要3秒鐘時間

public class ReadWriteLockDemo {

    private static int value;

    // 定義一個排他鎖
    static Lock lock = new ReentrantLock();

    // 定義讀寫鎖
    static ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();

    // 讀鎖
    static Lock readLock = readWriteLock.readLock();

    // 寫鎖
    static Lock writeLock = readWriteLock.writeLock();

    public static void read(Lock lock) {
        try {
            lock.lock();
            TimeUnit.SECONDS.sleep(1);
            System.out.println("read over...");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void write(Lock lock, int v) {
        try {
            lock.lock();
            TimeUnit.SECONDS.sleep(1);
            value = v;
            System.out.println("write over!");
            //模擬寫操作
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        // 排他鎖
//        Runnable readR = ()->read(lock);
        // 讀鎖 共享鎖
        Runnable readR = () -> read(readLock);
        // 排他鎖
//        Runnable writeR = () -> write(lock, 10);

        // 寫鎖 排它鎖
        Runnable writeR = () -> write(writeLock, 10);

        for(int i=0; i<18; i++) new Thread(readR).start();
        for(int i=0; i<2; i++) new Thread(writeR).start();
    }

}

信號量 Semaphore

  • Semaphore作用是限流,用來限制同時運行的線程數
  • 車道 加油站

簡單使用代碼

public class SemaphoreDemo {

    public static void main(String[] args) {
        //Semaphore s = new Semaphore(2);
        Semaphore s = new Semaphore(2, true);
        //允許一個線程同時執行
        //Semaphore s = new Semaphore(1);

        new Thread(()->{
            try {
                s.acquire();

                System.out.println("T1 running...");
                Thread.sleep(200);
                System.out.println("T1 running...");

            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                s.release();
            }
        }).start();

        new Thread(()->{
            try {
                s.acquire();

                System.out.println("T2 running...");
                Thread.sleep(200);
                System.out.println("T2 running...");

                s.release();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }).start();
    }
}
發佈了24 篇原創文章 · 獲贊 1 · 訪問量 596
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章