Android--hw_get_module解析


時間:2016-12-14作者:華清遠見

我們知道,google爲了保護硬件廠商的信息,在Android中添加了一層,也就是大名鼎鼎的HAL層。

在看HAL的編寫方法的過程中,會發現整個模塊貌似沒有一個入口。一般說來模塊都要有個入口,比如應用程序有main函數,可以爲加載器進行加載執行,dll文件有dllmain,而對於我們自己寫的動態鏈接庫,我們可以對庫中導出的任何符號進行調用。

問題來了,Android中的HAL是比較具有通用性的,需要上層的函數對其進行加載調用,Android的HAL加載器是如何實現對不同的Hardware Module進行通用性的調用的呢?

帶着這個疑問查看Android源碼,會發現Android中實現調用HAL是通過hw_get_module實現的。

[cpp] view plaincopy

1. int hw_get_module(const char *id, const struct hw_module_t **module);

這是其函數原型,id會指定Hardware的id,這是一個字符串,比如我們比較熟悉的led的id是
        #define SENSORS_HARDWARE_MODULE_ID “led”,如果找到了對應的hw_module_t結構體,會將其指針放入*module中。看看它的實現。

[cpp] view plaincopy

1. 124 int hw_get_module(const char *id, const struct hw_module_t **module)
        2. 125 { 
        3. 126        int status; 
        4. 127        int i; 
        5. 128        const struct hw_module_t *hmi = NULL; 
        6. 129        char prop[PATH_MAX]; 
        7. 130        char path[PATH_MAX]; 
        8. 131 
        9. 132        /* 
        10. 133        * Here we rely on the fact that calling dlopen multiple times on 
        11. 134        * the same .so will simply increment a refcount (and not load 
        12. 135        * a new copy of the library). 
        13. 136        * We also assume that dlopen() is thread-safe. 
        14. 137        */ 
        15. 138 
        16. 139        /* Loop through the configuration variants looking for a module */ 
        17. 140        for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++) { 
        18. 141                if (i < HAL_VARIANT_KEYS_COUNT) { 
        19. 142                        if (property_get(variant_keys[i], prop, NULL) == 0) { //獲取數組variant_keys裏的屬性值
        20.
        21. 143                                continue; 
        22. 144                        } 
        23. 145                        snprintf(path, sizeof(path), "%s/%s.%s.so", 
        24. 146                        HAL_LIBRARY_PATH, id, prop);//如果開發板叫做fs100,這裏就加載system/lib/hw/led.fs100.so 
        25. 147                } else { snprintf(path, sizeof(path), "%s/%s.default.so", 
        26. 149                        HAL_LIBRARY_PATH, id);//這裏默認加載system/lib/hw/led.default.so 
        27. 150                } 
        28. 151                if (access(path, R_OK)) { 
        29. 152                        continue; 
        30. 153                } 
        31. 154                /* we found a library matching this id/variant */ 
        32. 155                break; 
        33. 156        } 
        34. 157 
        35. 158        status = -ENOENT; 
        36. 159        if (i < HAL_VARIANT_KEYS_COUNT+1) { 
        37. 160                /* load the module, if this fails, we're doomed, and we should not try 
        38. 161                * to load a different variant. */ 
        39. 162                status = load(id, path, module);//load函數是關鍵,調用load函數打開動態鏈接庫 
        40. 163        } 
        41. 164 
        42. 165        return status; 
        43. 166 }

上述代碼主要是獲取動態鏈接庫的路徑,並調用load函數去打開指定路徑下的庫文件,load函數是關鍵所在。

好,那我們就來解開load函數的神祕面紗!!!

[cpp] view plaincopy

1. 65 static int load(const char *id, 
        2. 66                const char *path, 
        3. 67                const struct hw_module_t **pHmi) 
        4. 68 { 
        5. 69        int status; 
        6. 70        void *handle; 
        7. 71        struct hw_module_t *hmi; 
        8. 72 
        9. 73        /* 
        10. 74        * load the symbols resolving undefined symbols before 
        11. 75        * dlopen returns. Since RTLD_GLOBAL is not or'd in with 
        12. 76        * RTLD_NOW the external symbols will not be global 
        13. 77        */ 
        14. 78        handle = dlopen(path, RTLD_NOW); 
        15. 79        if (handle == NULL) { 
        16. 80                char const *err_str = dlerror(); 
        17. 81                LOGE("load: module=%s\n%s", path, err_str?err_str:"unknown"); 
        18. 82                status = -EINVAL; 
        19. 83                goto done; 
        20. 84        } 
        21. 85 
        22. 86        /* Get the address of the struct hal_module_info. */ 
        23. 87        const char *sym = HAL_MODULE_INFO_SYM_AS_STR; 
        24. 88        hmi = (struct hw_module_t *)dlsym(handle, sym); 
        25. 89        if (hmi == NULL) { 
        26. 90                LOGE("load: couldn't find symbol %s", sym); 
        27. 91                status = -EINVAL; 
        28. 92                goto done; 
        29. 93        } 
        30. 94 
        31. 95        /* Check that the id matches */ 
        32. 96        if (strcmp(id, hmi->id) != 0) { 
        33. 97     &nnbsp;          LOGE("load: id=%s != hmi->id=%s", id, hmi->id); 
        34. 98                status = -EINVAL; 
        35. 99                goto done; 
        36. 100        } 
        37. 101 
        38. 102        hmi->dso = handle; 
        39. 103 
        40. 104        /* success */ 
        41. 105        status = 0; 
        42. 106 
        43. 93        } 
        44. 94 
        45. 95        /* Check that the id matches */ 
        46. 96        if (strcmp(id, hmi->id) != 0) { 
        47. 97                LOGE("load: id=%s != hmi->id=%s", id, hmi->id); 
        48. 98                status = -EINVAL; 
        49. 99                goto done; 
        50. 100        } 
        51. 101 
        52. 102        hmi->dso = handle; 
        53. 103 
        54. 104        /* success */ 
        55. 105    nbsp;    status = 0; 
        56. 106 
        57. 107        done: 
        58. 108        if (status != 0) { 
        59. 109                hmi = NULL; 
        60. 110                if (handle != NULL) { 
        61. 111                        dlclose(handle); 
        62. 112                        handle = NULL; 
        63. 113                } 
        64. 114        } else { 
        65. 115                LOGV("loaded HAL id=%s path=%s hmi=%p handle=%p", 
        66. 116                        id, path, *pHmi, handle); 
        67. 117        } 
        68. 118 
        69. 119        *pHmi = hmi; 
        70. 120 
        71. 121        return status; 
        72. 122 }

這裏有一個宏HAL_MODULE_INFO_SYM_AS_STR需要注意:

[cpp] view plaincopy

1. #define HAL_MODULE_INFO_SYM_AS_STR "HMI"  

2. #define HAL_MODULE_INFO_SYM HMI   //每個Hal so 中國hw_module_t,及sensor_module_t等變種的實例都是以HMI命令,被編譯到ELF so文件中。

其中hmi = (structhw_module_t *)dlsym(handle, sym);

這裏是查找“HMI”這個導出符號,並獲取其地址。// 通過HMI字符串關鍵字從elf中找到hw_moudle實例所在地址。

看到這裏,我們不禁要問,爲什麼根據“HMI”這個導出符號,就可以從動態鏈接庫中找到結構體hw_module_t呢??

我們知道,ELF = Executable and Linkable Format,可執行連接格式,是UNIX系統實驗室(USL)作爲應用程序二進制接口(Application Binary Interface,ABI)而開發和發佈的,擴展名爲elf。一個ELF頭在文件的開始,保存了路線圖(road map),描述了該文件的組織情況。sections保存着object 文件的信息,從連接角度看:包括指令,數據,符號表,重定位信息等等。我們的led.default.so就是一個elf格式的文件。

[cpp] view plaincopy

1. linux@ubuntu:~/eclair_2.1_farsight/out/target/product/fs100/system/lib/hw$ file led.default.so 
        2. led.default.so: ELF 32-bit LSB shared object, ARM, version 1 (SYSV), dynamically linked, stripped

所以說,我們可以使用unix給我們提供的readelf命令去查看相應的符號信息,就一目瞭然了!

[cpp] view plaincopy

1. linux@ubuntu:~/eclair_2.1_farsight/out/target/product/fs100/system/lib/hw$ readelf -s led.default.so 
        2.
        3. Symbol table '.dynsym' contains 25 entries: 
        4.                Num:            Value        Size        Type                 Bind                          Vis                  Ndx  Name 
        5.                0:           00000000        0             NOTYPE        LOCAL                DEFAULT            UND 
        6.                1:           000004c8        0             SECTION       LOCAL                DEFAULT            7 
        7.                2:           00001000        0             SECTION       LOCAL               DEFAULT            11 
        8.                3:           00000000        0             FUNC              GLOBAL            DEFAULT            UND ioctl 
        9.                4:           000006d4        0             NOTYPE         GLOBAL            DEFAULT            ABS __exidx_end 
        10.                5:         00000000        0            FUNC              GLOBAL             DEFAULT            UND __aeabi_unwind_cpp_pr0 
        11.                6:         00001178        0            NOTYPE         GLOBAL             DEFAULT           ABS _bss_end__ 
        12.                7:         00000000        0            FUNC              GLOBAL             DEFAULT           UND malloc 
        13.                8:         00001174        0            NOTYPE         GLOBAL             DEFAULT           ABS __bss_start__
        14.                9:         00000000        0            FUNC              GLOBAL             DEFAULT           UND __android_log_print 
        15.                10:       000006ab        0            NOTYPE         GLOBAL             DEFAULT           ABS __exidx_start 
        16.                11:       00001174        4            OBJECT          GLOBAL             DEFAULT           15 fd 
        17.                12:       000005d5        60           FUNC             GLOBAL             DEFAULT           7 led_set_off 
        18.                13:       00001178        0            NOTYPE nbsp;         GLOBAL            DEFAULT            ABS __bss_end__ 
        19.                14:        00001174        0           NOTYPE          GLOBAL            DEFAULT            ABS __bss_start 
        20.                15:       00000000        0            FUNC               GLOBAL            DEFAULT            UND memset 
        21.                16:       00001178        0           NOTYPE           GLOBAL            DEFAULT            ABS __end__ 
        22.                17:       00001174        0           NOTYPE           GLOBAL            DEFAULT            ABS _edata 
        23.                18:       00001178        0           NOTYPE           GLOBAL            DEFAULT            ABS _end 
        24.                19:       00000000        0           FUNC                GLOBAL            DEFAULT            UND open 
        25.                20:       00080000        0           NOTYPE           GLOBAL            DEFAULT            ABS _stack 
        26.                21:       00001000        128      OBJECT            GLOBAL            DEFAULT            11 HMI 
        27.                22:       00001170        0           NOTYPE           GLOBAL            DEFAULT            14 __data_start 
        28.                23:       00000000        0           FUNC                GLOBAL            DEFAULT            UND close 
        29.                24:       00000000        0           FUNC                GLOBAL            DEFAULT            UND free

在21行我們發現,名字就是“HMI”,對應於hw_module_t結構體。再去對照一下HAL的代碼。

[cpp] view plaincopy

1. const struct led_module_t HAL_MODULE_INFO_SYM = { 
        2.        common: { 
        3.                tag: HARDWARE_MODULE_TAG, 
        4.                version_major: 1, 
        5.                version_minor: 0, 
        6.                id: LED_HARDWARE_MODULE_ID, 
        7.                name: "led HAL module", 
        8.                author: "farsight", 
        9.                methods: &led_module_methods, 
        10.        }, 
        11.
        12. };

這裏定義了一個名爲HAL_MODULE_INFO_SYM的copybit_module_t的結構體,common成員爲hw_module_t類型。注意這裏的HAL_MODULE_INFO_SYM變量必須爲這個名字,這樣編譯器纔會將這個結構體的導出符號變爲“HMI”,這樣這個結構體才能被dlsym函數找到!

綜上,我們知道了andriod HAL模塊也有一個通用的入口地址,這個入口地址就是HAL_MODULE_INFO_SYM變量,通過它,我們可以訪問到HAL模塊中的所有想要外部訪問到的方法。

轉載:http://www.embedu.org/Column/Column733.htm

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章