Android幀率統計及其相關基礎知識介紹

Android幀率統計及其相關基礎知識介紹

幀率,在App層面,就是UI界面每秒可重繪的次數,它的上限是運行手機的屏幕刷新率,也就是屏幕每秒刷新的次數,一般來說,刷新率超過60,人眼就感知不到了,所以一般手機的屏幕刷新率都爲60,因爲超過60一沒多大意義,二更耗電,並且還會加速屏幕的老化,影響使用壽命,所以會得不償失

可以用如下代碼獲取屏幕刷新率:

Display display = getWindowManager().getDefaultDisplay();
float refreshRate = display.getRefreshRate();

一般都爲60,也就是說,圖像的刷新週期爲16ms

Android圖像顯示自底向上依次是

  1. HWComposer HAL - VSync, framebuffer
  2. SurfaceFlinger -> 對App過來的Surface圖像數據做疊加,組合等處理
  3. App - GPU DisplayList Render
  4. App - ViewTree DisplayList

App的每一個View都會包含一個DisplayList,既然是List,說明它本質上就是一個緩存區,它包含了View即將要繪製的Canvas API調用及其參數記錄,設置緩存列表最大的好處就是,在每次繪製過程中,如果View UI沒有變化,或者變化很少,可以儘可能的複用DisplayList,從而提高繪製效率

GPU DisplayList Render,指的是,將DisplayList包含的Canvas繪製命令轉換成Open GL命令由GPU執行生成最終的圖像數據

接着傳遞到SurfaceFlinger,在做疊加和組合後,最終通過framebuffer來顯示到屏幕上

這四個角色如果要高效協作,必須要存在一個同步機制,它就是VSync機制

VSync介紹

Vsync這個中斷通知,源頭是從HWComposer HAL發出,並通知到SurfaceFlinger,然後SurfaceFlinger再將通知轉發給各個App,咱們可以看Choreographer接受VSync的FrameDisplayEventReceiver是怎麼實現的,直接看父類DisplayEventReceiver對應的C++實現:

DisplayEventReceiver::DisplayEventReceiver() {
    sp<ISurfaceComposer> sf(ComposerService::getComposerService());
    if (sf != NULL) {
        mEventConnection = sf->createDisplayEventConnection();
        if (mEventConnection != NULL) {
            mDataChannel = mEventConnection->getDataChannel();
        }
    }
}

接着看Vsync是如何同步的

沒有VSync:
image
第一個16ms一切正常,第二個16ms,前半段GPU和CPU都沒參與進來,第2幀繪製觸發過晚,導致CPU繪製和GPU渲染延後到了第三個16ms,從而產生卡頓;爲什麼第二個GPU和CPU會沒參與進來,可能那時候在做別的運算,也可能是閒置的,沒收到通知而已,總之就是,他兩啥時候參與進來,是不確定的

使用VSync後:
image
加入Vsync後就好多了,Display會每16ms觸發Vsync中斷,通知CPU和GPU開始繪製下一楨,一切井然有序,畫面流暢多了;有個VSync後,圖中顯示的正常情況,也會存在不正常情況

雙重緩衝:
image
雙重緩衝,說明只存在兩個buffer,一個供當前顯示,一個用於下一個界面的繪製,不過如果碰到圖中所示的情況,就會存在卡頓的情況,原因是第一和第三個16ms週期,CPU和GPU都沒能在週期內渲染完畢,延後到下一週期了,從而導致了第2和第4個16ms週期的卡頓;從圖中可以看出,第二個16ms的CPU和GPU是空閒的,第三個16ms週期,前半段GPU也是空閒的,其實第三個16ms週期的A是可以提前觸發的繪製的,目前沒被觸發是因爲緩衝區不夠,因爲在第二個週期,A緩衝還被Display用着,要優化這種情況,必須再加個緩衝

三重緩衝:
image
引入三重緩衝後,雖然第二個週期還是jank了,但是由於有緩衝C可用,可以在第二個週期就開始下一幀的繪製,從而最大程度利用和CPU和GPU,減少了後續jank的產生

Choreographer的作用

直接看圖:

sequenceDiagram
Choreographer->>SurfaceFliner: connection
Choreographer->>SurfaceFliner: request vsync notify
HWComposer->>SurfaceFliner: vsync event
SurfaceFliner->>Choreographer: notify
Choreographer->>Choreographer: do frame
Choreographer->>SurfaceFliner: swap frame buffer

從圖中可以看出,Choreographer的作用就兩點:

  1. 向SurfaceFlinger請求vsync通知
  2. 在下一vsync通知到來時,觸發當前幀的繪製,繪製完成後,再把數據提交給SurfaceFliner,然後輸出到framebuffer

從上面說的可以知道,app如果不想錯過SurfaceFlinger這一次vsync數據提交,那必須在16ms完成全部的繪製,要不就錯過了,從而產生掉幀

當前幀的繪製,是通過調用App運行時設置的callback來完成的,調用順序:

CALLBACK_INPUT:與輸入事件有關
CALLBACK_ANIMATION:與動畫有關
CALLBACK_TRAVERSAL:與UI繪製有關

從代碼層面分析

首先連接SurfaceFlinger:

    private Choreographer(Looper looper) {
        mLooper = looper;
        mHandler = new FrameHandler(looper);
        //就在這裏
        mDisplayEventReceiver = USE_VSYNC ? new FrameDisplayEventReceiver(looper) : null;
        mLastFrameTimeNanos = Long.MIN_VALUE;

        mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());

        mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
        for (int i = 0; i <= CALLBACK_LAST; i++) {
            mCallbackQueues[i] = new CallbackQueue();
        }
    }

FrameDisplayEventReceiver構造連接SurfaceFlinger的代碼上頭已經貼出

接着設置回調,直接看postCallbackDelayedInternal吧

    private void postCallbackDelayedInternal(int callbackType,
            Object action, Object token, long delayMillis) {
        if (DEBUG) {
            Log.d(TAG, "PostCallback: type=" + callbackType
                    + ", action=" + action + ", token=" + token
                    + ", delayMillis=" + delayMillis);
        }

        synchronized (mLock) {
            final long now = SystemClock.uptimeMillis();
            final long dueTime = now + delayMillis;
            mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);

            if (dueTime <= now) {
                scheduleFrameLocked(now);
            } else {
                Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
                msg.arg1 = callbackType;
                msg.setAsynchronous(true);
                mHandler.sendMessageAtTime(msg, dueTime);
            }
        }
    }

這個函數首先將callback以及執行時間添加到mCallbackQueues中,接着通過callback執行時間來決定是否立即執行scheduleFrameLocked:

   private void scheduleFrameLocked(long now) {
        if (!mFrameScheduled) {
            mFrameScheduled = true;
            if (USE_VSYNC) {
                if (DEBUG) {
                    Log.d(TAG, "Scheduling next frame on vsync.");
                }

                // If running on the Looper thread, then schedule the vsync immediately,
                // otherwise post a message to schedule the vsync from the UI thread
                // as soon as possible.
                if (isRunningOnLooperThreadLocked()) {
                    scheduleVsyncLocked();
                } else {
                    Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
                    msg.setAsynchronous(true);
                    mHandler.sendMessageAtFrontOfQueue(msg);
                }
            } else {
                final long nextFrameTime = Math.max(
                        mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
                if (DEBUG) {
                    Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
                }
                Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
                msg.setAsynchronous(true);
                mHandler.sendMessageAtTime(msg, nextFrameTime);
            }
        }
    }

如果這個函數是在主線程調用的,直接調用scheduleVsyncLocked發送vsync請求:

    private void scheduleVsyncLocked() {
        mDisplayEventReceiver.scheduleVsync();
    }

通過mFrameScheduled來控制,確保在一個vsync週期內,只發送一次vsync請求,因爲vsync請求是一對一的,發送一次接收一次

通過上面可以看出,只要調用了Choreographer的postcallback相關函數,callback連同設置的執行時間就會被保存到mCallbackQueues隊列,接着在callback執行時間點,判斷是否發送了vsync請求,如果沒有,則立即發送

最後,在下一個vsync中斷到來時,SurfaceFlinger會把event及時的通知到Choreographer.FrameDisplayEventReceiver:

        @Override
        public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
            ...
            mTimestampNanos = timestampNanos;
            mFrame = frame;
            Message msg = Message.obtain(mHandler, this);
            msg.setAsynchronous(true);
            mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
        }
        
        @Override
        public void run() {
            mHavePendingVsync = false;
            doFrame(mTimestampNanos, mFrame);
        }

onVsync會給主線程發送消息,消息立即被執行,接着doFrame被調用:

void doFrame(long frameTimeNanos, int frame) {
    synchronized (mLock) {
            if (!mFrameScheduled) {
                return; // no work to do
            }
            //vsync請求標記爲false
            mFrameScheduled = false;
            mLastFrameTimeNanos = frameTimeNanos;
        }
    doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
    doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);
    doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
    ...
}

Input, Animation, Traversal的callbacks隊列中,在frameTimeNanos之前的callbacks會被取出,並依次執行

Handler同步屏障

爲什麼要有同步屏障?試想這個場景,你調用View.invalidate申請重繪,接着經過一系列的請求流轉,到達了:

    //ViewRootImpl.java
    void invalidate() {
        mDirty.set(0, 0, mWidth, mHeight);
        if (!mWillDrawSoon) {
            scheduleTraversals();
        }
    }

接着:

    void scheduleTraversals() {
        if (!mTraversalScheduled) {
            mTraversalScheduled = true;
            mTraversalBarrier = mHandler.getLooper().postSyncBarrier();
            mChoreographer.postCallback(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
            if (!mUnbufferedInputDispatch) {
                scheduleConsumeBatchedInput();
            }
            notifyRendererOfFramePending();
        }
    }

最終到達mChoreographer.postCallback,接着就像上面說過的,請求vsync notify,然後在下一vsync觸發重繪?

有沒有問題?常規來說肯定沒問題,但是如果在invalidate之前,App其他代碼調用Handler.sendMessageDelayed來發送一個delay的message,並且這個delay message正好在:

    Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
    msg.setAsynchronous(true);
    mHandler.sendMessageAtTime(msg, nextFrameTime);

這個MSG_DO_FRAME message之前被執行呢?這就有問題了,因爲delay message的執行時間是不確定的,這就導致doframe的執行時間也會變的不確定,這肯定不行,必須要有一個機制把MSG_DO_FRAME的調用優先級提上來

這個機制就是Handler同步屏障,回過頭來看ViewRootImpl.scheduleTraversals:

    mTraversalBarrier = mHandler.getLooper().postSyncBarrier();

既然叫同步屏障,說明在調用上面這行代碼後,在這個時間點之後所有的sync Message(默認狀態)會被臨時忽略,優先執行async message,上頭的MSG_DO_FRAME message就是一條async message:

    msg.setAsynchronous(true);

最終在ViewRootImpl.doTraversal中第一時間移除當前的同步屏障,使Handler分發恢復正常狀態

void doTraversal() {
    if (mTraversalScheduled) {
        mTraversalScheduled = false;
        //移除同步屏障
        mHandler.getLooper().removeSyncBarrier(mTraversalBarrier);
        ...
    }
}

接着簡單看下同步屏障的原理,mHandler.getLooper().postSyncBarrier()最終調用:

    //MessageQueue.java
    int enqueueSyncBarrier(long when) {
        // Enqueue a new sync barrier token.
        // We don't need to wake the queue because the purpose of a barrier is to stall it.
        synchronized (this) {
            final int token = mNextBarrierToken++;
            final Message msg = Message.obtain();
            msg.markInUse();
            msg.when = when;
            msg.arg1 = token;

            Message prev = null;
            Message p = mMessages;
            if (when != 0) {
                while (p != null && p.when <= when) {
                    prev = p;
                    p = p.next;
                }
            }
            if (prev != null) { // invariant: p == prev.next
                msg.next = p;
                prev.next = msg;
            } else {
                msg.next = p;
                mMessages = msg;
            }
            return token;
        }
    }

在MessageQueue中添加一個target爲null的Message,並按時間插入到Message隊列中

接着看MessageQueue.next中相關代碼(只分析異步message的處理邏輯):

Message net(){
    ...
                Message prevMsg = null;
                Message msg = mMessages;
                //如果msg.target爲null,說明這是一個同步屏障
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    //循環找出異步message
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
    
                if (msg != null) {
                    //有異步消息,但是還沒到觸發時間,設置pollTimeout時間,繼續等待
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        //如果存在同步堆棧,prevMsg是不可能爲空的
                        if (prevMsg != null) {
                            //將異步message從隊列中移除
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (false) Log.v("MessageQueue", "Returning message: " + msg);
                        return msg;
                    }
                } else {
                    // No more messages.
                    //如果msg爲null,說明沒找到異步message,繼續監聽等待
                    nextPollTimeoutMillis = -1;
                }    
    ...
}

幀率計算

public class FPSMonitor implements Choreographer.FrameCallback, Runnable{
    //監控1秒內的幀數
    private static final int MONITOR_TIME = 1000;

    private HandlerThread handlerThread;

    private long startTime = -1;
    private long endTime = -1;

    private long vSyncCount = 0;
    private Handler workHandler;

    public FPSMonitor(){

    }

    @Override
    public void run() {
        long duration = (endTime - startTime) / 1000000L;
        float frame = 1000.0f * vSyncCount / duration;
        Log.d("harish", "frame = " + frame + " duration = " + duration);

        start();
    }

    @Override
    public void doFrame(long frameTimeNanos) {
        if (startTime == -1){
            startTime = frameTimeNanos;
        }

        vSyncCount++;

        long duration = (frameTimeNanos - startTime) / 1000000L;

        if (duration >= MONITOR_TIME){
            endTime = frameTimeNanos;

            workHandler.post(this);
        }else{
            Choreographer.getInstance().postFrameCallback(this);
        }
    }

    public void start(){
        Log.d("harish", "FPSMonitor -- start");

        if (handlerThread == null){
            handlerThread = new HandlerThread("fps monitor thread");
            handlerThread.start();

            workHandler = new Handler(handlerThread.getLooper());
        }

        startTime = -1;
        endTime = -1;
        vSyncCount = 0;

        Choreographer.getInstance().postFrameCallback(this);
    }
}

參考文獻

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章