Android Sensor系統剖析(2.3.5)(上)

Author:[email protected]
本文希望通過對androidsensor系統的介紹,使大家在瞭解android sensor系統架構的同時,會對大家閱讀和分析其他同類型代碼框架有所幫助。

1:概覽

首先看下應用層如何獲取sensor數據:

public class SensorActivity extends Activity, implements SensorEventListener {
     private final SensorManager mSensorManager;
     private final Sensor mAccelerometer;
     public SensorActivity() {
         //獲取對應服務
         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
         //獲取指定sensor對象
         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
     }
     protected void onResume() {
         super.onResume();
         //註冊listener用於數據回調
         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
     }
     protected void onPause() {
         super.onPause();
         mSensorManager.unregisterListener(this);
     }
     public void onAccuracyChanged(Sensor sensor, int accuracy) {
     }
     public void onSensorChanged(SensorEvent event) {
     }
 }
從代碼上看,應用首先要使用sensor service名來獲取SensorManager對象實例,然後調用其成員函數registerListener並傳入listener來得到回調數據。

Sensor service在後臺和driver交互獲取數據,各個應用連上service獲取想要的sensor數據,從如上代碼看,沒有任何和service交互的代碼,這一切都被封裝到SensorManager裏了。

2:Sensor service

Android輕量級的系統服務,一般都會運行於systemserver內,sensor service夠輕量,當然不能例外。

System server起來時,會創建sensorserivice:

//frameworks/base/cmds/system_server/library/system_init.cpp
extern "C" status_t system_init()
{
    LOGI("Entered system_init()");
 
    sp<ProcessState> proc(ProcessState::self());
   
    sp<IServiceManager> sm = defaultServiceManager();
    LOGI("ServiceManager: %p\n", sm.get());
   
    sp<GrimReaper> grim = new GrimReaper();
    sm->asBinder()->linkToDeath(grim, grim.get(), 0);
   
    char propBuf[PROPERTY_VALUE_MAX];
    property_get("system_init.startsurfaceflinger", propBuf, "1");
    if (strcmp(propBuf, "1") == 0) {
        // Start the SurfaceFlinger
        SurfaceFlinger::instantiate();
    }
    // Start the sensor service
    SensorService::instantiate();
…..
}

通過調用SensorService的靜態成員函數instantiate()來初始化並創建sensor service,在詳細介紹這個函數的內部行爲之前,先來看下SensorService類的聲明。

//frameworks/base/services/sensorservice/Sensorservice.h
class SensorService :
        public BinderService<SensorService>,
        public BnSensorServer,
        protected Thread
{
   friend class BinderService<SensorService>;
   static const nsecs_t MINIMUM_EVENTS_PERIOD =   1000000; // 1000 Hz
   SensorService();
   virtual ~SensorService();
   virtual void onFirstRef();
   // Thread interface
   virtual bool threadLoop();
   // ISensorServer interface
    virtual Vector<Sensor> getSensorList();
    virtual sp<ISensorEventConnection> createSensorEventConnection();
    virtual status_t dump(int fd, const Vector<String16>& args);
    class SensorEventConnection : public BnSensorEventConnection {
        virtual ~SensorEventConnection();
        virtual void onFirstRef();
        virtual sp<SensorChannel> getSensorChannel() const;
        virtual status_t enableDisable(int handle, bool enabled);
        virtual status_t setEventRate(int handle, nsecs_t ns);
        sp<SensorService> const mService;
        sp<SensorChannel> const mChannel;
        mutable Mutex mConnectionLock;
        // protected by SensorService::mLock
        SortedVector<int> mSensorInfo;
    public:
        SensorEventConnection(const sp<SensorService>& service);
        status_t sendEvents(sensors_event_t const* buffer, size_t count,
                sensors_event_t* scratch = NULL);
        bool hasSensor(int32_t handle) const;
        bool hasAnySensor() const;
        bool addSensor(int32_t handle);
        bool removeSensor(int32_t handle);
    };
    class SensorRecord {
        SortedVector< wp<SensorEventConnection> > mConnections;
    public:
        SensorRecord(const sp<SensorEventConnection>& connection);
        bool addConnection(const sp<SensorEventConnection>& connection);
        bool removeConnection(const wp<SensorEventConnection>& connection);
        size_t getNumConnections() const { return mConnections.size(); }
    };
    SortedVector< wp<SensorEventConnection> > getActiveConnections() const;
    DefaultKeyedVector<int, SensorInterface*> getActiveVirtualSensors() const;
    String8 getSensorName(int handle) const;
    void recordLastValue(sensors_event_t const * buffer, size_t count);
    static void sortEventBuffer(sensors_event_t* buffer, size_t count);
    void registerSensor(SensorInterface* sensor);
    void registerVirtualSensor(SensorInterface* sensor);
    // constants
    Vector<Sensor> mSensorList;
    DefaultKeyedVector<int, SensorInterface*> mSensorMap;
    Vector<SensorInterface *> mVirtualSensorList;
    Permission mDump;
    status_t mInitCheck;
    // protected by mLock
    mutable Mutex mLock;
    DefaultKeyedVector<int, SensorRecord*> mActiveSensors;
    DefaultKeyedVector<int, SensorInterface*> mActiveVirtualSensors;
    SortedVector< wp<SensorEventConnection> > mActiveConnections;
    // The size of this vector is constant, only the items are mutable
    KeyedVector<int32_t, sensors_event_t> mLastEventSeen;
public:
    static char const* getServiceName() { return "sensorservice"; }
    void cleanupConnection(SensorEventConnection* connection);
    status_t enable(const sp<SensorEventConnection>& connection, int handle);
    status_t disable(const sp<SensorEventConnection>& connection, int handle);
    status_t setEventRate(const sp<SensorEventConnection>& connection, int handle, nsecs_t ns);
};
 這個類裏面聲明瞭很多函數和變量,我們如何區分哪些是框架性接口函數,哪些是功能輔助性的呢?很簡單,看父類就知道了。
 class SensorService :
        public BinderService<SensorService>,
        public BnSensorServer,
        protected Thread 

SensorService多重繼承自如上三個類,下面簡單介紹下:

BinderService<SensorService>:
模板類,主要功能是提供一些靜態函數創建service對象實例,並加到service manager,主要函數有instantiate()等。
Thread:
線程輔助類,調用run創建並啓動線程,然後在線程主函數內會回調threadloop函數,所以我們在使用這個它時,最簡單得做法是派生自它,然後重寫threadloop即可。
BnSensorServer:
這個類派生自ISensorServer,ISensorServer則聲明瞭sensor server和client之間RPC通信接口,具體如下:
class ISensorServer : public IInterface
{
public:
    DECLARE_META_INTERFACE(SensorServer);
 
    virtual Vector<Sensor> getSensorList() = 0;
    virtual sp<ISensorEventConnection> createSensorEventConnection() = 0;
};

瞭解了三個父類的功能後,可以推出SensorService的核心功能如下:

1:SensorService:: instantiate()初始化sensorservice並創建線程

2:threadloop在線程啓動後,從驅動獲取sensor原始數據並通過RPC機制讓sensor client獲取。

3:BnSensorServer的成員函數負責讓sensor client獲取sensor信息和創建connection

接下去我們就從這幾個函數着手進行詳細分析!

先看SensorService:: instantiate():

//frameworks/base/include/binder/BinderService.h
template<typename SERVICE>
class BinderService
{
public:
    static status_t publish() {
        sp<IServiceManager> sm(defaultServiceManager());
        return sm->addService(String16(SERVICE::getServiceName()), new SERVICE());
    }
    static void publishAndJoinThreadPool() {
        sp<ProcessState> proc(ProcessState::self());
        sp<IServiceManager> sm(defaultServiceManager());
        sm->addService(String16(SERVICE::getServiceName()), new SERVICE());
        ProcessState::self()->startThreadPool();
        IPCThreadState::self()->joinThreadPool();
    }
   static void instantiate() { publish(); }
    static status_t shutdown() {
        return NO_ERROR;
    }

BinderService是模板類,通過代碼可以看到,instantiate直接調用了publish函數,publish函數先獲取service manager,然後new了一個SensorService對象,接着調用addService並將sensor service name和新創建sensorservice對象傳入。

可能有人會問,調用addService的目的是什麼?我們不是通過newSensorService創建sensor後臺服務了嗎?是的,服務的確已經啓動了,但是服務的目的是什麼?是供他人使用,你要讓他人使用你,前提是得讓別人找到你,所以我覺得addService的主要功能有兩點:

1:將sensor service信息傳入binderkernel,然後binder kernel生成對應於sensor service的handle,並維護之。

2:service manager得到並維護對應servicename和handle供其他應用獲取。

舉例來說,這就好比你建立了一臺設備,你要讓別人連接你這臺設備,你需要讓你的設備與寬帶服務器建立撥號連接,然後寬帶服務器給你分配ip,別人拿到ip,就能與你建立通信鏈接了,但是ip太難記了,所以就有了域名

把例子中描述的和android機制對應下,設備對應sensor service,binder kernel對應寬帶服務器,ip對應handle,service name對應域名,那service manager對應什麼?當然是域名解析服務了。

所以現在就很明瞭了,客戶端要與對應的服務建立通信,只需要通過服務名拿到對應的handle,然後用這個handle組建對應的proxy binder對象即可。

那從代碼中呢,如何區分代碼是用於創建本地服務還是創建遠程代理呢?很簡單,看類命名就可以了,以Sensor service舉例,本地服務類爲BnSensorServer,代理類則爲BpSensorServer,開到類的開頭沒,Bn以爲native binderBp則是proxy binder

Android RPC通信那塊就簡單介紹到這裏,繼續往下看。

服務創建時,new了一個SensorService對象實例,那接下去代碼肯定走SensorService的構造函數:

//frameworks/base/services/sensorservice/SensorService.cpp
 SensorService::SensorService()
    : Thread(false),
      mDump("android.permission.DUMP"),
      mInitCheck(NO_INIT){
}

看到了,構造函數相當於啥也沒做,既然sensorservice對象傳給了ServiceManager::AddService,我們來看看AddService的函數聲明

virtual status_t addService( const String16& name, const sp<IBinder>& service);
第二個參數是sp強引用對象,而非單純的sensor service指針,在第一次構建sp強引用對象時,會調用onFirstRef():

void SensorService::onFirstRef()
{
    LOGD("nuSensorService starting...");
    SensorDevice& dev(SensorDevice::getInstance());
    if (dev.initCheck() == NO_ERROR) {
        uint32_t virtualSensorsNeeds =
                (1<<SENSOR_TYPE_GRAVITY) |
                (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
                (1<<SENSOR_TYPE_ROTATION_VECTOR);
        sensor_t const* list;
        int count = dev.getSensorList(&list);
        mLastEventSeen.setCapacity(count);
        for (int i=0 ; i<count ; i++) {
            registerSensor( new HardwareSensor(list[i]) );
            switch (list[i].type) {
                case SENSOR_TYPE_GRAVITY:
                case SENSOR_TYPE_LINEAR_ACCELERATION:
                case SENSOR_TYPE_ROTATION_VECTOR:
                    virtualSensorsNeeds &= ~(1<<list[i].type);
                    break;
            }
        }
 
        if (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) {
            registerVirtualSensor( new GravitySensor(list, count) );
        }
        if (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) {
            registerVirtualSensor( new LinearAccelerationSensor(list, count) );
        }
        if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) {
            registerVirtualSensor( new RotationVectorSensor(list, count) );
        }
 
        run("SensorService", PRIORITY_URGENT_DISPLAY);
        mInitCheck = NO_ERROR;
    }
}
這個函數先通過SensorDevice:: getInstance獲取SensorDevice對象實例,所以我們接着看SensorDevice的構造函數:

SensorDevice::SensorDevice()
    :  mSensorDevice(0),
       mSensorModule(0)
{
    status_t err = hw_get_module(SENSORS_HARDWARE_MODULE_ID,
            (hw_module_t const**)&mSensorModule);
    LOGE_IF(err, "couldn't load %s module (%s)",
            SENSORS_HARDWARE_MODULE_ID, strerror(-err));
    if (mSensorModule) {
        err = sensors_open(&mSensorModule->common, &mSensorDevice);
        LOGE_IF(err, "couldn't open device for module %s (%s)",
                SENSORS_HARDWARE_MODULE_ID, strerror(-err));
        if (mSensorDevice) {
            sensor_t const* list;
            ssize_t count = mSensorModule->get_sensors_list(mSensorModule, &list);
            mActivationCount.setCapacity(count);
            Info model;
            for (size_t i=0 ; i<size_t(count) ; i++) {
                mActivationCount.add(list[i].handle, model);
                //初始將所有sensor設置爲未激活狀態
                mSensorDevice->activate(mSensorDevice, list[i].handle, 0);
            }
        }
    }
}
通過構造函數可以看出,SensorDevice封裝了對SensorHAL層代碼的調用,主要包含獲取sensor list,poll sensor數據和是否激活指定sensor等,這裏就不詳細描述。

繼續從SensorService::onFirstRef往下走,在得到SensorDevice對象實例後,通過調用dev.getSensorList(&list)獲取sensor list,然後調用registersensor將所有sensor加到SensorService的成員變量mSensorList中。

接下去調用run啓動線程:

run("SensorService", PRIORITY_URGENT_DISPLAY);
線程啓動後,threadloop會被回調:

bool SensorService::threadLoop()
{
    LOGD("nuSensorService thread starting...");
 
    const size_t numEventMax = 16 * (1 + mVirtualSensorList.size());
    sensors_event_t buffer[numEventMax];
    sensors_event_t scratch[numEventMax];
    SensorDevice& device(SensorDevice::getInstance());
    const size_t vcount = mVirtualSensorList.size();
 
    ssize_t count;
do {
    //從設備獲取已經激活sensor的數據,如果無一sensor被激活,該動作將會被
    //阻塞
        count = device.poll(buffer, numEventMax);
        if (count<0) {
            LOGE("sensor poll failed (%s)", strerror(-count));
            break;
        }
        //獲取最新的數據
        recordLastValue(buffer, count);
 
        // handle virtual sensors
        if (count && vcount) {
            const DefaultKeyedVector<int, SensorInterface*> virtualSensors(
                    getActiveVirtualSensors());
            const size_t activeVirtualSensorCount = virtualSensors.size();
            if (activeVirtualSensorCount) {
                size_t k = 0;
                for (size_t i=0 ; i<size_t(count) ; i++) {
                    sensors_event_t const * const event = buffer;
                    for (size_t j=0 ; j<activeVirtualSensorCount ; j++) {
                        sensors_event_t out;
                        if (virtualSensors.valueAt(j)->process(&out, event[i])) {
                            buffer[count + k] = out;
                            k++;
                        }
                    }
                }
                if (k) {
                    // record the last synthesized values
                    recordLastValue(&buffer[count], k);
                    count += k;
                    // sort the buffer by time-stamps
                    sortEventBuffer(buffer, count);
                }
            }
        }
 
        // 得到已有的client連接
        const SortedVector< wp<SensorEventConnection> > activeConnections(
                getActiveConnections());
        size_t numConnections = activeConnections.size();
        for (size_t i=0 ; i<numConnections ; i++) {
            sp<SensorEventConnection> connection(
                    activeConnections[i].promote());
            if (connection != 0) {
                //將sensor數據發往client端
                connection->sendEvents(buffer, count, scratch);
            }
        }
    } while (count >= 0 || Thread::exitPending());
 
    LOGW("Exiting SensorService::threadLoop!");
    return false;
}
Threadloop主要通過調用sensor HAL函數獲取已激活sensor的數據,然後將獲取到的數據發往已經建立的connection。

Connection是如何建立的?我們之前描述的三個父類的功能中已經有過描述,ISensorServer定義了client和sensor service的RPC通信接口,client端在得到sensor service代理對象後,通過調用createSensorEventConnection與sensorservice建立connection,先看service端的實現代碼:

sp<ISensorEventConnection> SensorService::createSensorEventConnection()
{
    sp<SensorEventConnection> result(new SensorEventConnection(this));
    return result;
}
Service端僅僅創建了SensorEventConnection對象實例,然後將這個對象實例傳給client端,這裏有兩個疑問:

1:將實例對象傳給client,那是否SensorEventConnection實例也是個RPC服務?

2:sensor service不是保存了active connections,這裏也沒做保存操作,那在哪裏保存?唯一的線索就是構造SensorEventConnection傳入的this指針了。

先看第一個疑問,SensorEventConnection是不是RPC服務,看其構造函數先

class SensorEventConnection : public BnSensorEventConnection

看到沒?父類是Bn開頭的,說明其是native binder,的確是RPC服務,由於這個服務是私底下咱哥倆偷摸用的,所以就無需加入servicemanager了。

那這個connection是怎麼加入sensorservice的action connections的,由於是RPC服務,所以這塊動作應該是由client驅動的。

先看ISensorEventConnection

class ISensorEventConnection : public IInterface
{
public:
    DECLARE_META_INTERFACE(SensorEventConnection);
    virtual sp<SensorChannel> getSensorChannel() const = 0;
    virtual status_t enableDisable(int handle, bool enabled) = 0;
    virtual status_t setEventRate(int handle, nsecs_t ns) = 0;
};
共三個接口函數,setEventRate這個應該是設置sensor 數據上報頻率的,跟active connection應該沒啥關係;getSensorChannel是幹嘛用的?等會介紹,但是看名字,也不像!剩下就是enableDisable這個函數了

status_t SensorService::SensorEventConnection::enableDisable(
        int handle, bool enabled)
{
    status_t err;
    if (enabled) {
        err = mService->enable(this, handle);
    } else {
        err = mService->disable(this, handle);
    }
    return err;
}
如果是enable,調用sensor service的enable函數

status_t SensorService::enable(const sp<SensorEventConnection>& connection,
        int handle)
{
    if (mInitCheck != NO_ERROR)
        return mInitCheck;
 
    Mutex::Autolock _l(mLock);
SensorInterface* sensor = mSensorMap.valueFor(handle);
//將對應sensor激活
    status_t err = sensor ? sensor->activate(connection.get(), true) : status_t(BAD_VALUE);
    if (err == NO_ERROR) {
        SensorRecord* rec = mActiveSensors.valueFor(handle);
        if (rec == 0) {
            rec = new SensorRecord(connection);
            mActiveSensors.add(handle, rec);
            if (sensor->isVirtual()) {
                mActiveVirtualSensors.add(handle, sensor);
            }
        } else {
            if (rec->addConnection(connection)) {
                // this sensor is already activated, but we are adding a
                // connection that uses it. Immediately send down the last
                // known value of the requested sensor.
                sensors_event_t scratch;
                sensors_event_t& event(mLastEventSeen.editValueFor(handle));
                if (event.version == sizeof(sensors_event_t)) {
                    connection->sendEvents(&event, 1);
                }
            }
        }
        if (err == NO_ERROR) {
            // connection now active
            //將connection加入active connection中
            if (connection->addSensor(handle)) {
                // the sensor was added (which means it wasn't already there)
                // so, see if this connection becomes active
                if (mActiveConnections.indexOf(connection) < 0) {
                    mActiveConnections.add(connection);
                }
            }
        }
    }
    return err;
}
在這個函數中,激活對應sensor,然後將當前connection加入active connection

到這裏,知道了如何創建connection和activeconnection後,還有一個問題就是,sensor數據發送的?大家可能會說,不是通過調用SensorEventConnection ::sendEvents來實現的嗎?但是回過頭看下ISensorEventConnection的三個函數聲明,沒有sendEvents這個函數,也就說sendEvents只是一個供sensorservice端用的public函數而已。

status_t SensorService::SensorEventConnection::sendEvents(
        sensors_event_t const* buffer, size_t numEvents,
        sensors_event_t* scratch)
{
    //。。。。
    ssize_t size = mChannel->write(scratch, count*sizeof(sensors_event_t));
    if (size == -EAGAIN) {
        // the destination doesn't accept events anymore, it's probably
        // full. For now, we just drop the events on the floor.
        LOGW("dropping %d events on the floor", count);
        return size;
    }
 
    LOGE_IF(size<0, "dropping %d events on the floor (%s)",
            count, strerror(-size));
 
    return size < 0 ? status_t(size) : status_t(NO_ERROR);
}
SensorEvent調用SensorChannel的wirte函數發送sensor數據,mChannel是在SensorEventConnection函數中初始化的。

ssize_t SensorChannel::write(void const* vaddr, size_t size)
{
    ssize_t len = ::write(mSendFd, vaddr, size);
    if (len < 0)
        return -errno;
    return len;
}
從這個函數中看到,sensorservice和client端的sensor數據不是通過RPC機制傳遞的,看下SensorChannel的構造函數

SensorChannel::SensorChannel()
    : mSendFd(-1), mReceiveFd(-1)
{
    int fds[2];
    if (pipe(fds) == 0) {
        mReceiveFd = fds[0];
        mSendFd = fds[1];
        fcntl(mReceiveFd, F_SETFL, O_NONBLOCK);
        fcntl(mSendFd, F_SETFL, O_NONBLOCK);
    }
}
明白了,進程間數據共享是通過管道來實現的,現在知道ISensorEventConnection:: getSensorChannel的作用了,用於傳遞Receive FD給client的

status_t SensorChannel::writeToParcel(Parcel* reply) const
{
    if (mReceiveFd < 0)
        return -EINVAL;
 
    status_t result = reply->writeDupFileDescriptor(mReceiveFd);
    close(mReceiveFd);
    mReceiveFd = -1;
    return result;
}

Client端拿到received FD後,就可以讀取sensor數據啦。至此,服務端已經說完了,接下去是客戶端部分的講解。


本文乃原創,轉載請註明出處,謝謝。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章