TCP傳輸過程詳解——三次握手、四次揮手

TCP

  • TCP 與 UDP 的區別相當大。它充分地實現了數據傳輸時各種控制功能,可以進行丟包時的重發控制,還可以對次序亂掉的分包進行順序控制。而這些在 UDP 中都沒有。
  • 此外,TCP 作爲一種面向有連接的協議,只有在確認通信對端存在時纔會發送數據,從而可以控制通信流量的浪費。
  • 根據 TCP 的這些機制,在 IP 這種無連接的網絡上也能夠實現高可靠性的通信( 主要通過檢驗和、序列號、確認應答、重發控制、連接管理以及窗口控制等機制實現)。

3.1 三次握手(重點)

TCP 提供面向有連接的通信傳輸。面向有連接是指在數據通信開始之前先做好兩端之間的準備工作。
所謂三次握手是指建立一個 TCP 連接時需要客戶端和服務器端總共發送三個包以確認連接的建立。在socket編程中,這一過程由客戶端執行connect來觸發。

下面來看看三次握手的流程圖:
在這裏插入圖片描述

  • 第一次握手:客戶端將標誌位SYN置爲1,隨機產生一個值seq=J,並將該數據包發送給服務器端,客戶端進入SYN_SENT狀態,等待服務器端確認。
  • 第二次握手:服務器端收到數據包後由標誌位SYN=1知道客戶端請求建立連接,服務器端將標誌位SYN和ACK都置爲1,ack=J+1,隨機產生一個值seq=K,並將該數據包發送給客戶端以確認連接請求,服務器端進入SYN_RCVD狀態。
  • 第三次握手:客戶端收到確認後,檢查ack是否爲J+1,ACK是否爲1,如果正確則將標誌位ACK置爲1,ack=K+1,並將該數據包發送給服務器端,服務器端檢查ack是否爲K+1,ACK是否爲1,如果正確則連接建立成功,客戶端和服務器端進入ESTABLISHED狀態,完成三次握手,隨後客戶端與服務器端之間可以開始傳輸數據了。

3.2 四次揮手(重點)

  • 四次揮手即終止TCP連接,就是指斷開一個TCP連接時,需要客戶端和服務端總共發送4個包以確認連接的斷開。在socket編程中,這一過程由客戶端或服務端任一方執行close來觸發。
  • 由於TCP連接是全雙工的,因此,每個方向都必須要單獨進行關閉,這一原則是當一方完成數據發送任務後,發送一個FIN來終止這一方向的連接,收到一個FIN只是意味着這一方向上沒有數據流動了,即不會再收到數據了,但是在這個TCP連接上仍然能夠發送數據,直到這一方向也發送了FIN。首先進行關閉的一方將執行主動關閉,而另一方則執行被動關閉。

下面來看看四次揮手的流程圖:
在這裏插入圖片描述

  • 中斷連接端可以是客戶端,也可以是服務器端。
  • 第一次揮手:客戶端發送一個FIN=M,用來關閉客戶端到服務器端的數據傳送,客戶端進入FIN_WAIT_1狀態。意思是說"我客戶端沒有數據要發給你了",但是如果你服務器端還有數據沒有發送完成,則不必急着關閉連接,可以繼續發送數據。
  • 第二次揮手:服務器端收到FIN後,先發送ack=M+1,告訴客戶端,你的請求我收到了,但是我還沒準備好,請繼續你等我的消息。這個時候客戶端就進入FIN_WAIT_2 狀態,繼續等待服務器端的FIN報文。
  • 第三次揮手:當服務器端確定數據已發送完成,則向客戶端發送FIN=N報文,告訴客戶端,好了,我這邊數據發完了,準備好關閉連接了。服務器端進入LAST_ACK狀態。
  • 第四次揮手:客戶端收到FIN=N報文後,就知道可以關閉連接了,但是他還是不相信網絡,怕服務器端不知道要關閉,所以發送ack=N+1後進入TIME_WAIT狀態,如果Server端沒有收到ACK則可以重傳。服務器端收到ACK後,就知道可以斷開連接了。客戶端等待了2MSL後依然沒有收到回覆,則證明服務器端已正常關閉,那好,我客戶端也可以關閉連接了。最終完成了四次握手。

上面是一方主動關閉,另一方被動關閉的情況,實際中還會出現同時發起主動關閉的情況

具體流程如下圖:
在這裏插入圖片描述

3.3 通過序列號與確認應答提高可靠性

  • 在 TCP 中,當發送端的數據到達接收主機時,接收端主機會返回一個已收到消息的通知。這個消息叫做確認應答(ACK)。當發送端將數據發出之後會等待對端的確認應答。如果有確認應答,說明數據已經成功到達對端。反之,則數據丟失的可能性很大。
  • 在一定時間內沒有等待到確認應答,發送端就可以認爲數據已經丟失,並進行重發。由此,即使產生了丟包,仍然能夠保證數據能夠到達對端,實現可靠傳輸。
  • 未收到確認應答並不意味着數據一定丟失。也有可能是數據對方已經收到,只是返回的確認應答在途中丟失。這種情況也會導致發送端誤以爲數據沒有到達目的地而重發數據。
  • 此外,也有可能因爲一些其他原因導致確認應答延遲到達,在源主機重發數據以後纔到達的情況也屢見不鮮。此時,源主機只要按照機制重發數據即可。
  • 對於目標主機來說,反覆收到相同的數據是不可取的。爲了對上層應用提供可靠的傳輸,目標主機必須放棄重複的數據包。爲此我們引入了序列號。
  • 序列號是按照順序給發送數據的每一個字節(8位字節)都標上號碼的編號。接收端查詢接收數據 TCP 首部中的序列號和數據的長度,將自己下一步應該接收的序列號作爲確認應答返送回去。通過序列號和確認應答號,TCP 能夠識別是否已經接收數據,又能夠判斷是否需要接收,從而實現可靠傳輸

在這裏插入圖片描述

3.4 重發超時的確定

  • 重發超時是指在重發數據之前,等待確認應答到來的那個特定時間間隔。如果超過這個時間仍未收到確認應答,發送端將進行數據重發。最理想的是,找到一個最小時間,它能保證“確認應答一定能在這個時間內返回”。
  • TCP 要求不論處在何種網絡環境下都要提供高性能通信,並且無論網絡擁堵情況發生何種變化,都必須保持這一特性。爲此,它在每次發包時都會計算往返時間及其偏差。將這個往返時間和偏差時間相加,重發超時的時間就是比這個總和要稍大一點的值。
  • 在 BSD 的 Unix 以及 Windows 系統中,超時都以0.5秒爲單位進行控制,因此重發超時都是0.5秒的整數倍。不過,最初其重發超時的默認值一般設置爲6秒左右。
  • 數據被重發之後若還是收不到確認應答,則進行再次發送。此時,等待確認應答的時間將會以2倍、4倍的指數函數延長。
  • 此外,數據也不會被無限、反覆地重發。達到一定重發次數之後,如果仍沒有任何確認應答返回,就會判斷爲網絡或對端主機發生了異常,強制關閉連接。並且通知應用通信異常強行終止

3.5 以段爲單位發送數據

  • 在建立 TCP 連接的同時,也可以確定發送數據包的單位,我們也可以稱其爲“最大消息長度”(MSS)。最理想的情況是,最大消息長度正好是 IP 中不會被分片處理的最大數據長度。
  • TCP 在傳送大量數據時,是以 MSS 的大小將數據進行分割發送。進行重發時也是以 MSS 爲單位。
  • MSS 在三次握手的時候,在兩端主機之間被計算得出。兩端的主機在發出建立連接的請求時,會在 TCP 首部中寫入 MSS 選項,告訴對方自己的接口能夠適應的 MSS 的大小。然後會在兩者之間選擇一個較小的值投入使用。

3.6 利用窗口控制提高速度

  • TCP 以1個段爲單位,每發送一個段進行一次確認應答的處理。這樣的傳輸方式有一個缺點,就是包的往返時間越長通信性能就越低。

  • 爲解決這個問題,TCP 引入了窗口這個概念。確認應答不再是以每個分段,而是以更大的單位進行確認,轉發時間將會被大幅地縮短。也就是說,發送端主機,在發送了一個段以後不必要一直等待確認應答,而是繼續發送。如下圖所示:
    在這裏插入圖片描述

  • 窗口大小就是指無需等待確認應答而可以繼續發送數據的最大值。上圖中窗口大小爲4個段。這個機制實現了使用大量的緩衝區,通過對多個段同時進行確認應答的功能。

3.7 滑動窗口控制

在這裏插入圖片描述

  • 上圖中的窗口內的數據即便沒有收到確認應答也可以被髮送出去。不過,在整個窗口的確認應答沒有到達之前,如果其中部分數據出現丟包,那麼發送端仍然要負責重傳。爲此,發送端主機需要設置緩存保留這些待被重傳的數據,直到收到他們的確認應答。
  • 在滑動窗口以外的部分包括未發送的數據以及已經確認對端已收到的數據。當數據發出後若如期收到確認應答就可以不用再進行重發,此時數據就可以從緩存區清除。
  • 收到確認應答的情況下,將窗口滑動到確認應答中的序列號的位置。這樣可以順序地將多個段同時發送提高通信性能。這種機制也別稱爲滑動窗口控制。

3.8 窗口控制中的重發控制

在使用窗口控制中, 出現丟包一般分爲兩種情況:

  1. 確認應答未能返回的情況。在這種情況下,數據已經到達對端,是不需要再進行重發的,如下圖:
    在這裏插入圖片描述
  2. 某個報文段丟失的情況。接收主機如果收到一個自己應該接收的序列號以外的數據時,會針對當前爲止收到數據返回確認應答。如下圖所示,當某一報文段丟失後,發送端會一直收到序號爲1001的確認應答,因此,在窗口比較大,又出現報文段丟失的情況下,同一個序列號的確認應答將會被重複不斷地返回。而發送端主機如果連續3次收到同一個確認應答,就會將其對應的數據進行重發。這種機制比之前提到的超時管理更加高效,因此也被稱爲高速重發控制。

在這裏插入圖片描述

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章