手势识别:使用EfficientNet模型迁移、VGG16模型迁移

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


EfficientNet中的每个模型要求的输入形状大小

每个网络要求的输入形状大小:   
	EfficientNetB0 - (224, 224, 3)
	EfficientNetB1 - (240, 240, 3)
	EfficientNetB2 - (260, 260, 3)
	EfficientNetB3 - (300, 300, 3)
	EfficientNetB4 - (380, 380, 3)
	EfficientNetB5 - (456, 456, 3)
	EfficientNetB6 - (528, 528, 3)
	EfficientNetB7 - (600, 600, 3)

EfficientNet模型迁移的使用注意事项:
	1.因为该模型的源码是在tensorflow 1.x的版本,并非是tensorflow 2.0的版本,因此在tensorflow 2.0环境中使用的话,
	  需要用到tf.compat.v1.disable_eager_execution(),表示关闭默认的eager模式,但要注意的是,如果关闭默认的eager模式了的话,
	  那么同时还使用tf.keras.callbacks.TensorBoard的话会报错,tf.keras.callbacks.ModelCheckpoint不会报错,
	  那么解决的方式要么此时不使用TensorBoard,或者不关闭默认的eager模式。
	2.layers.py中的class Swish中的call()函数返回值的修改建议。
		如果使用了tf.compat.v1.disable_eager_execution()之后,报错No registered 'swish_f32' OpKernel for GPU devices compatible with node的话,
		把 layers.py中的class Swish中的call()函数返回值 return tf.nn.swish(inputs) 修改为 return inputs * tf.math.sigmoid(inputs) 即可解决,
		实际上底层是 tf.nn.swish(x) 封装了 x* tf.math.sigmoid(x),不使用tf.nn.swish之后,即可也把tf.compat.v1.disable_eager_execution()给注释掉,
		即不需要关闭默认的eager模式了,那么此时也可以正常同时使用TensorBoard。

使用EfficientNet模型迁移 第一个版本

import multiprocessing
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import TensorBoard, Callback
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam, RMSprop
from efficientnet import model as EfficientNet
import os
from sklearn.model_selection import train_test_split
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input


# 注意关闭默认的eager模式
# tf.compat.v1.disable_eager_execution()

num_epochs = 10
batch_size = 10
learning_rate = 0.001
Dataset_dir = './Sign-Language-Digits-Dataset-master/Dataset/'
Dataset_test_dir = './Sign-Language-Digits-Dataset-master/Examples/'

Dataset_dir_list = []
Dataset_test_dir_list = []
lable_list = []
train_img_fileNames = []
train_img_lables = []
test_img_fileNames = []
test_img_lables = []
input_size = 100
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
losses = tf.keras.losses.sparse_categorical_crossentropy
metrics = [tf.keras.metrics.sparse_categorical_accuracy]


"""
metrics 是 sparse_categorical_crossentropy,则ModelCheckpoint中的第一个路劲字符串信息中和monitor参数中都需要用val_sparse_categorical_crossentropy
metrics 是 acc,则ModelCheckpoint中的第一个路劲字符串信息中和monitor参数中都需要用val_acc
metrics 是 accuracy,则ModelCheckpoint中的第一个路劲字符串信息中和monitor参数中都需要用val_accuracy

"""

def decode_and_resize(filename, label):
    image_string = tf.io.read_file(filename)
    image_decoded = tf.image.decode_jpeg(image_string)
    image_resized = tf.image.resize(image_decoded, [100, 100]) / 255.0
    return image_resized, label

def VGG_224x244_decode_and_resize(filename, label):
    image_string = tf.io.read_file(filename)
    image_decoded = tf.image.decode_jpeg(image_string)
    image_resized = tf.image.resize(image_decoded, [224, 224]) / 255.0
    return image_resized, label

def EfficientNet_300x300_decode_and_resize(filename, label):
    image_string = tf.io.read_file(filename)
    image_decoded = tf.image.decode_jpeg(image_string)
    image_resized = tf.image.resize(image_decoded, [300, 300]) / 255.0
    return image_resized, label

def get_model():
    # inputs = tf.keras.Input(shape=(100, 100, 3))
    # conv1 = tf.keras.layers.Conv2D(
    #     filters=32,  # 卷积核数量
    #     kernel_size=[3, 3],  # 卷积核大小
    #     padding='same',  # 领填充方式
    #     activation=tf.nn.relu,  # 激活函数
    #     kernel_regularizer=tf.keras.regularizers.l2(0.001)
    # )(inputs)
    # pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)(conv1)
    # conv2 = tf.keras.layers.Conv2D(
    #     filters=64,  # 卷积核数量
    #     kernel_size=[3, 3],  # 卷积核大小
    #     padding='same',  # 领填充方式
    #     activation=tf.nn.relu,  # 激活函数
    #     kernel_regularizer=tf.keras.regularizers.l2(0.001)
    # )(pool1)
    # pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)(conv2)
    # flatten = tf.keras.layers.Flatten()(pool2)
    # dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu,
    #                                kernel_regularizer=tf.keras.regularizers.l2(0.001))(flatten)
    # # dropout = tf.keras.layers.Dropout(rate=0.4)(dense1)
    # dense2 = tf.keras.layers.Dense(units=10)(dense1)
    # outputs = tf.keras.layers.Softmax()(dense2)
    # model = tf.keras.Model(inputs=inputs, outputs=outputs)
    # ================================================================

    model = tf.keras.Sequential([
        tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(100, 100, 3)),
        tf.keras.layers.MaxPooling2D(),
        tf.keras.layers.Conv2D(64, 3, activation='relu'),
        tf.keras.layers.MaxPooling2D(),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(1024, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    return model

def train_model_1(model):
    # lable = os.listdir(Dataset_dir)
    # print(lable) #['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    lable = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    for i in lable:
        temp_list = []
        for filename in os.listdir(Dataset_dir + i):
            temp_list.append(Dataset_dir + str(i) + "/" + filename)
        Dataset_dir_list.append(temp_list)
        lable_list.append(np.full(len(temp_list), int(i)))  # np.full(5,10)

    # print(len(lable_list)) #10
    # print(len(Dataset_dir_list)) #10

    # ================================================================

    for filename in os.listdir(Dataset_test_dir):
        Dataset_test_dir_list.append(Dataset_test_dir + filename)

    Dataset_dir_lists = tf.constant([f for filenames in Dataset_dir_list for f in filenames])
    lable_lists = tf.constant([int(s) for lables in lable_list for s in lables])
    Dataset_dir_lists_test = tf.constant([f for f in Dataset_test_dir_list])
    lable_lists_test = tf.constant([int(s) for s in lable])
    # ================================================================

    train_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists, lable_lists))
    train_dataset = train_dataset.map(decode_and_resize)
    train_dataset = train_dataset.batch(batch_size)
    train_dataset = train_dataset.shuffle(buffer_size=5000)
    train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

    test_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists_test, lable_lists_test))
    test_dataset = test_dataset.map(decode_and_resize)
    test_dataset = test_dataset.batch(batch_size)
    # ================================================================

    #还要预先建立 ./graph/train/plugins/profile 的目录
    #要在graph的同级目录下 使用命令 tensorboard --logdir=graph 或者 tensorboard --logdir='./graph'
    #http://localhost:6006/ 访问
    tensorboard = tf.keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1, write_graph=True, write_images=True)
    #预先建立./ckpt目录
    check = tf.keras.callbacks.ModelCheckpoint('./ckpt/weights_{epoch:02d}-{val_loss:.2f}.h5',
                                               monitor='val_loss',
                                               save_best_only=True,
                                               save_weights_only=False,
                                               mode='auto',
                                               period=1)

    # ================================================================

    model.compile(loss=losses, optimizer=optimizer, metrics=metrics)
    model.fit(train_dataset, validation_data=test_dataset, epochs=num_epochs, callbacks=[check, tensorboard]) #

    y_pred = model.predict(test_dataset)
    # 定义评估函数
    sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
    # 定义测试数据集一共批次的大小
    sparse_categorical_accuracy.update_state(y_true=lable_lists_test, y_pred=y_pred)
    print("测试准确率: %f" % sparse_categorical_accuracy.result())

def train_model_2(model):
    # lable = os.listdir(Dataset_dir)
    # print(lable) #['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    lable = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    for i in lable:
        temp_list = []
        for filename in os.listdir(Dataset_dir+i):
            temp_list.append(Dataset_dir+str(i)+"/"+filename)
        Dataset_dir_list.append(temp_list)
        lable_list.append(np.full(len(temp_list),int(i))) #np.full(5,10)

    print(len(lable_list)) #10
    print(len(Dataset_dir_list)) #10
    # ================================================================

    for i in lable:
        x_train, x_test, y_train, y_test = train_test_split(Dataset_dir_list[int(i)], lable_list[int(i)], test_size=0.1,
                                                            random_state=22)
        train_img_fileNames.append(x_train)
        train_img_lables.append(y_train)
        test_img_fileNames.append(x_test)
        test_img_lables.append(y_test)

    print(len(train_img_fileNames)) #10
    print(len(train_img_lables)) #10
    print(len(test_img_fileNames)) #10
    print(len(test_img_lables)) #10

    Dataset_dir_lists = [f for train_img in train_img_fileNames for f in train_img]
    lable_lists = [f for train_lable in train_img_lables for f in train_lable]
    Dataset_dir_lists_test = [f for test_img in test_img_fileNames for f in test_img]
    lable_lists_test = [f for test_lables in test_img_lables for f in test_lables]

    print(len(Dataset_dir_lists)) #1852
    print(len(lable_lists)) #1852
    print(len(Dataset_dir_lists_test)) #210
    print(len(lable_lists_test)) #210
    # ================================================================

    train_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists, lable_lists))
    train_dataset = train_dataset.map(decode_and_resize)
    train_dataset = train_dataset.batch(batch_size)
    train_dataset = train_dataset.shuffle(buffer_size=5000)
    train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

    test_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists_test, lable_lists_test))
    test_dataset = test_dataset.map(decode_and_resize)
    test_dataset = test_dataset.batch(batch_size)

    # ================================================================

    #还要预先建立 ./graph/train/plugins/profile 的目录
    #要在graph的同级目录下 使用命令 tensorboard --logdir=graph 或者 tensorboard --logdir='./graph'
    #http://localhost:6006/ 访问
    tensorboard = tf.keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1, write_graph=True, write_images=True)
    #预先建立./ckpt目录
    check = tf.keras.callbacks.ModelCheckpoint('./ckpt/weights_{epoch:02d}-{val_loss:.2f}.h5',
                                               monitor='val_loss',
                                               save_best_only=True,
                                               save_weights_only=False,
                                               mode='auto',
                                               period=1)

    # ================================================================

    model.compile(loss=losses, optimizer=optimizer, metrics=metrics)
    model.fit(train_dataset, validation_data=test_dataset, epochs=num_epochs, callbacks=[check, tensorboard]) #

    y_pred = model.predict(test_dataset)
    # 定义评估函数
    sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
    # 定义测试数据集一共批次的大小
    sparse_categorical_accuracy.update_state(y_true=lable_lists_test, y_pred=y_pred)
    print("测试准确率: %f" % sparse_categorical_accuracy.result())

def train_model_3(model):
    train_datagen = ImageDataGenerator(
        rescale=1. / 255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

    train_generator = train_datagen.flow_from_directory(
        './Sign-Language-Digits-Dataset-master/Dataset/',
        target_size=(100, 100),
        batch_size=10,
        class_mode='binary')

    for filename in os.listdir(Dataset_test_dir):
        Dataset_test_dir_list.append(Dataset_test_dir + filename)

    Dataset_dir_lists_test = [f for f in Dataset_test_dir_list]
    lable = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

    test_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists_test, lable))
    test_dataset = test_dataset.map(decode_and_resize)
    test_dataset = test_dataset.batch(batch_size)

    # ================================================================

    #还要预先建立 ./graph/train/plugins/profile 的目录
    #要在graph的同级目录下 使用命令 tensorboard --logdir=graph 或者 tensorboard --logdir='./graph'
    #http://localhost:6006/ 访问
    tensorboard = tf.keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1, write_graph=True, write_images=True)
    modelckpt = tf.keras.callbacks.ModelCheckpoint('./ckpt/transfer_{epoch:02d}-{val_loss:.2f}.h5',
                                                   monitor='val_loss',
                                                   save_best_only=True,
                                                   save_weights_only=False,
                                                   mode='auto',
                                                   period=1)

    model.compile(loss=losses, optimizer=optimizer, metrics=metrics)
    model.fit_generator(
        train_generator,
        epochs=10,
        validation_steps=800, validation_data=train_generator,
        callbacks=[modelckpt, tensorboard])

    y_pred = model.predict(test_dataset)
    # 定义评估函数
    sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
    # 定义测试数据集一共批次的大小
    sparse_categorical_accuracy.update_state(y_true=lable, y_pred=y_pred)
    print("测试准确率: %f" % sparse_categorical_accuracy.result())

def train_model_4():
    train_datagen = ImageDataGenerator(
        rescale=1. / 255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

    train_generator = train_datagen.flow_from_directory(
        './Sign-Language-Digits-Dataset-master/Dataset/',
        target_size=(224, 224),
        batch_size=10,
        class_mode='binary')

    for filename in os.listdir(Dataset_test_dir):
        Dataset_test_dir_list.append(Dataset_test_dir + filename)

    Dataset_dir_lists_test = [f for f in Dataset_test_dir_list]
    lable = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

    test_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists_test, lable))
    test_dataset = test_dataset.map(VGG_224x244_decode_and_resize)
    test_dataset = test_dataset.batch(10)

    # ================================================================

    base_model = VGG16(weights='imagenet', include_top=False)
    #修改VGG的模型,在VGG.outputs[0]输出的为[None, ?, ?, 512]--->全局平均池化-->两个全连接层1024, 10
    # 1、获取VGG模型的输出,不包含原有模型的top结构
    x = base_model.outputs[0]

    # 2、在VGG的输出之后定义自己的模型
    x = tf.keras.layers.GlobalAveragePooling2D()(x)

    # 两个全连接层
    x = tf.keras.layers.Dense(1024, activation=tf.nn.relu)(x)
    y_predict = tf.keras.layers.Dense(10, activation=tf.nn.softmax)(x)

    #冻结VGG的前面卷积结构,不参与训练
    # 循环获取base_model当中的层
    for layer in base_model.layers:
        layer.trainable = False

    # 3、使用Model封装新的模型返回
    transfer_model = tf.keras.models.Model(inputs=base_model.inputs, outputs=y_predict)

    # ================================================================

    #还要预先建立 ./graph/train/plugins/profile 的目录
    #要在graph的同级目录下 使用命令 tensorboard --logdir=graph 或者 tensorboard --logdir='./graph'
    #http://localhost:6006/ 访问
    tensorboard = tf.keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1, write_graph=True, write_images=True)
    modelckpt = tf.keras.callbacks.ModelCheckpoint('./ckpt/transfer_{epoch:02d}-{val_loss:.2f}.h5',
                                                   monitor='val_loss',
                                                   save_best_only=True,
                                                   save_weights_only=False,
                                                   mode='auto',
                                                   period=1)

    transfer_model.compile(loss=losses, optimizer=optimizer, metrics=metrics)
    transfer_model.summary()
    transfer_model.fit_generator(
        train_generator,
        steps_per_epoch=207,
        epochs=2,
        validation_data=train_generator,
        callbacks=[modelckpt, tensorboard])

    y_pred = transfer_model.predict(test_dataset)
    # 定义评估函数
    sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
    # 定义测试数据集一共批次的大小
    sparse_categorical_accuracy.update_state(y_true=lable, y_pred=y_pred)
    print(sparse_categorical_accuracy.result())

def train_model_5():
    # lable = os.listdir(Dataset_dir)
    # print(lable) #['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    lable = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    for i in lable:
        temp_list = []
        for filename in os.listdir(Dataset_dir+i):
            temp_list.append(Dataset_dir+str(i)+"/"+filename)
        Dataset_dir_list.append(temp_list)
        lable_list.append(np.full(len(temp_list),int(i))) #np.full(5,10)

    print(len(lable_list)) #10
    print(len(Dataset_dir_list)) #10

    # ================================================================

    for filename in os.listdir(Dataset_test_dir):
        Dataset_test_dir_list.append(Dataset_test_dir+filename)

    train_dataset_len = len(Dataset_dir_list)
    print(train_dataset_len)

    Dataset_dir_lists = tf.constant([f for filenames in Dataset_dir_list for f in filenames])
    lable_lists = tf.constant([int(s) for lables in lable_list for s in lables])
    Dataset_dir_lists_test = tf.constant([f for f in Dataset_test_dir_list])
    lable_lists_test = tf.constant([int(s) for s in lable])

    # ================================================================
    """
    1.使用repeat() 解决如下报错:
        WARNING:tensorflow:Your input ran out of data; interrupting training. 
        Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` 
        batches (in this case, 414 batches). You may need to use the repeat() function 
        when building your dataset.
        警告:tensorflow:输入的数据用完;中断训练。请确保您的数据集或生成器至少可以生成
        “每个steps_per_epoch*epoch”批(在本例中为414 batches)。在构建数据集时,可能需要使用repeat()函数。
    
    2.例子:batch、repeat、steps_per_epoch、epochs的使用
            1.先用 batch(批次大小) 然后才用 repeat(重复次数),
              比如:repeat(2)重复数据集2次,即复制一份数据集,最终即有两份数据集。
            2.steps_per_epoch 即表示 一个epoch 里面遍历批量数据的次数,即遍历多少个批量数据完成一个epoch。
            3.应保证要输入到模型的数据集(包括训练集/验证集)的批量个数都均为steps_per_epoch*epoch。
 
    3.使用顺序:from_tensor_slices -> map -> shuffle -> batch -> repeat -> prefetch
    """
    train_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists, lable_lists))
    train_dataset = train_dataset.map(EfficientNet_300x300_decode_and_resize, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    train_dataset = train_dataset.shuffle(buffer_size=5000)
    train_dataset = train_dataset.batch(batch_size)
    epochs_repeats = 10
    train_dataset = train_dataset.repeat(epochs_repeats)
    train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

    test_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists_test, lable_lists_test))
    test_dataset = test_dataset.map(EfficientNet_300x300_decode_and_resize, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    test_dataset = test_dataset.batch(batch_size)
    test_dataset = test_dataset.repeat(epochs_repeats)

    # ================================================================

    #还要预先建立 ./graph/train/plugins/profile 的目录
    #要在graph的同级目录下 使用命令 tensorboard --logdir=graph 或者 tensorboard --logdir='./graph'
    #http://localhost:6006/ 访问
    tensorboard = tf.keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1, write_graph=True, write_images=True)
    #预先建立./ckpt目录
    check = tf.keras.callbacks.ModelCheckpoint('./ckpt/weights_{epoch:02d}-{val_loss:.2f}.h5',
                                               monitor='val_loss',
                                               save_best_only=True,
                                               save_weights_only=False,
                                               mode='auto',
                                               period=1)
    # ================================================================

    num_classes = 10

    base_model = EfficientNet.EfficientNetB3(include_top=False, input_shape=(300, 300, 3), classes=num_classes)
    x = base_model.output
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    predictions = Dense(num_classes, activation='softmax')(x)

    model = Model(inputs=base_model.input, outputs=predictions)
    model.compile(loss=losses, optimizer=optimizer, metrics=metrics)
    model.summary()

    model.fit(
        train_dataset,
        # 一个epoch需要多少步
        #Train on 207 steps, validate on 1 steps
        steps_per_epoch=207,
        epochs=epochs_repeats,
        callbacks=[check, tensorboard],
        validation_data=test_dataset
    )
    return None

def predict_model_5():
    for filename in os.listdir(Dataset_test_dir):
        Dataset_test_dir_list.append(Dataset_test_dir+filename)
    lable = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    lable_list = []
    epochs_repeats = 10
    for _ in range(epochs_repeats):
        lable_list.extend(lable)
    Dataset_dir_lists_test = tf.constant([f for f in Dataset_test_dir_list])
    lable_lists_test = tf.constant([int(s) for s in lable])
    test_dataset = tf.data.Dataset.from_tensor_slices((Dataset_dir_lists_test, lable_lists_test))
    test_dataset = test_dataset.map(EfficientNet_300x300_decode_and_resize, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    test_dataset = test_dataset.batch(batch_size)
    test_dataset = test_dataset.repeat(epochs_repeats)

    num_classes = 10
    base_model = EfficientNet.EfficientNetB3(include_top=False, input_shape=(300, 300, 3), classes=num_classes)
    x = base_model.output
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    predictions = Dense(num_classes, activation='softmax')(x)
    model = Model(inputs=base_model.input, outputs=predictions)
    model.load_weights("./ckpt/weights_09-0.00.h5")

    y_predict = model.predict(test_dataset)
    sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
    sparse_categorical_accuracy.update_state(y_true=lable_list, y_pred=y_predict)
    print("测试集的准确率为: %f" % sparse_categorical_accuracy.result())
    return

if __name__ == '__main__':
    # model = get_model()

    #常规的用 examples文件夹中的图片来测试
    # train_model_1(model)

    #使用 sklearn的 train_test_split 来进行数据集分割
    # train_model_2(model)

    #使用 ImageDataGenerator 来直接读取各个类别文件中的图片
    # train_model_3(model)

    #使用 vgg16 进行迁移学习
    # train_model_4()

    """
    1.tf.nn.swish(x) 等同于把 x * tf.sigmoid(beta * x) 封装了。
      如果使用了tf.nn.swish(x) 则需要同时使用tf.compat.v1.disable_eager_execution()。
      如果使用x * tf.sigmoid(beta * x)来代替tf.nn.swish(x)的话,则可以不使用tf.compat.v1.disable_eager_execution()。
    2.但注意此处可能环境问题使用tf.nn.swish(x)的话会报错,所以此处使用x * tf.sigmoid(beta * x)来代替tf.nn.swish(x)
      报错信息如下:
        tensorflow/core/grappler/utils/graph_view.cc:830] No registered 'swish_f32' OpKernel for GPU devices compatible with node
       {{node swish_75/swish_f32}}  Registered:  <no registered kernels>
    3.使用 inputs * tf.math.sigmoid(inputs) 之后 就不用  tf.compat.v1.disable_eager_execution() 了,
      TensorBoard  那就也可以正常使用了,因为此处同时使用 tf.compat.v1.disable_eager_execution() 和 TensorBoard
      的时候,TensorBoard会报错:tensorflow.python.eager.core._FallbackException: This function does not handle the case of the path where all inputs are not already EagerTensors.
      
    """
    # EfficientNet 必须注意关闭默认的eager模式
    # tf.compat.v1.disable_eager_execution()

    #使用 EfficientNet模型 进行迁移学习
    train_model_5()
    # 使用 EfficientNet模型 进行 预测
    # predict_model_5()



使用EfficientNet模型迁移 第二个版本 

from day05.homework.efficientnet import model as EfficientNet
import tensorflow as tf
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from day05.homework.data_gen import data_from_sequence
from day05.homework.utils.lr_scheduler import WarmUpCosineDecayScheduler


num_epochs = 10
batch_size = 10
learning_rate = 0.001
Dataset_dir = './Sign-Language-Digits-Dataset-master/Dataset/'
Dataset_test_dir = './Sign-Language-Digits-Dataset-master/Examples/'
num_classes = 10
input_size = 300

Dataset_dir_list = []
Dataset_test_dir_list = []
lable_list = []
train_img_fileNames = []
train_img_lables = []
test_img_fileNames = []
test_img_lables = []
lr=1e-3
optimizer = tf.keras.optimizers.Adam(lr) #0.001
sparse_categorical_crossentropy = tf.keras.losses.sparse_categorical_crossentropy
#['accuracy']/['acc'] 可以代替 [tf.keras.metrics.sparse_categorical_accuracy],
# 因为['accuracy']/['acc']底层都会默认适配为[tf.keras.metrics.sparse_categorical_accuracy]
sparse_categorical_accuracy = [tf.keras.metrics.sparse_categorical_accuracy]


"""
metrics 是 sparse_categorical_crossentropy,则ModelCheckpoint中的第一个路劲字符串信息中和monitor参数中都需要用val_sparse_categorical_crossentropy
metrics 是 acc,则ModelCheckpoint中的第一个路劲字符串信息中和monitor参数中都需要用val_acc
metrics 是 accuracy,则ModelCheckpoint中的第一个路劲字符串信息中和monitor参数中都需要用val_accuracy
#['accuracy']/['acc'] 可以代替 [tf.keras.metrics.sparse_categorical_accuracy],
#因为['accuracy']/['acc']底层都会默认适配为[tf.keras.metrics.sparse_categorical_accuracy]
"""


def train_model():
    # 1、读取sequence数据
    train_sequence, validation_sequence = data_from_sequence(Dataset_dir, batch_size, num_classes, input_size)

    # ================================================================

    # 还要预先建立 ./graph/train/plugins/profile 的目录
    # 要在graph的同级目录下 使用命令 tensorboard --logdir=graph 或者 tensorboard --logdir='./graph'
    # http://localhost:6006/ 访问
    tensorboard = tf.keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1, write_graph=True,
                                                 write_images=True)
    # 预先建立./ckpt目录
    check = tf.keras.callbacks.ModelCheckpoint('./ckpt/weights_{epoch:02d}-{val_loss:.2f}.h5',
                                               monitor='val_loss',
                                               save_best_only=True,
                                               save_weights_only=False,
                                               mode='auto',
                                               period=1)
    # ================================================================

    base_model = EfficientNet.EfficientNetB3(include_top=False, input_shape=(300, 300, 3), classes=num_classes)
    x = base_model.output
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    predictions = Dense(num_classes, activation='softmax')(x)

    model = Model(inputs=base_model.input, outputs=predictions)

    # model.compile(loss=sparse_categorical_crossentropy, optimizer=optimizer, metrics=sparse_categorical_accuracy)
    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics= ['accuracy'])

    model.summary()
    # ================================================================

    # 余弦退回warmup
    # 得到总样本数
    sample_count = len(train_sequence)

    # 第二阶段学习率以及总步数
    learning_rate_base = lr
    max_epochs = 10
    total_steps = int(max_epochs * sample_count) / batch_size
    # 计算第一阶段的步数需要多少 warmup_steps
    warmup_epoch = 5
    warmup_steps = int(warmup_epoch * sample_count) / batch_size

    print("sample_count:",sample_count) #185
    print("total_steps:",total_steps) #185.0
    print("warmup_steps:",warmup_steps) #92.5

    warm_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,
                                         total_steps=total_steps,
                                         warmup_learning_rate=0,
                                         warmup_steps=warmup_steps,
                                         hold_base_rate_steps=0)
    # ================================================================
    """
    要求训练样本数/标签数和验证样本/标签数数都必须是可以整除batch_size的,
    否则在mixup中X = X1 * X_l + X2 * (1 - X_l)代码再进行矩阵广播运算的时候会报错,因为形状不一致,
    报错信息:ValueError: operands could not be broadcast together with shapes (不满batch_size大小,300,300,3) (batch_size,1,1,1)。
    正因为如此,所以要求训练样本数和验证样本数都必须是可以整除batch_size的,因为在一个epoch中遍历到最后一个step时,
    剩余的训练样本数不足以整除batch size,那么就会报错。
    """
    """
    因为手势识别的数据集过小,因此不要使用warm_lr(warmup以及余弦退火学习)、数据增强(随机擦处/ImageDataGenerator)、mixup,
    这样loss才能快速降低,准确率才能上升。
    """
    # 4、训练步骤
    model.fit_generator(
        train_sequence,
        steps_per_epoch=int(sample_count / batch_size),  # 一个epoch需要多少步 , 1epoch sample_out 140000多样本, 140000 / 16 = 步数
        epochs=max_epochs,
        verbose=1,
        callbacks=[check, tensorboard],
        # callbacks=[check, tensorboard, warm_lr],
        validation_data=validation_sequence,
        # max_queue_size=10,
        # workers=int(multiprocessing.cpu_count() * 0.7),
        # use_multiprocessing=True,
        # shuffle=True
    )
    return None



if __name__ == '__main__':
    """
    1.tf.nn.swish(x) 等同于把 x * tf.sigmoid(beta * x) 封装了。
      如果使用了tf.nn.swish(x) 则需要同时使用tf.compat.v1.disable_eager_execution()。
      如果使用x * tf.sigmoid(beta * x)来代替tf.nn.swish(x)的话,则可以不使用tf.compat.v1.disable_eager_execution()。
    2.但注意此处可能环境问题使用tf.nn.swish(x)的话会报错,所以此处使用x * tf.sigmoid(beta * x)来代替tf.nn.swish(x)
      报错信息如下:
        tensorflow/core/grappler/utils/graph_view.cc:830] No registered 'swish_f32' OpKernel for GPU devices compatible with node
       {{node swish_75/swish_f32}}  Registered:  <no registered kernels>
    3.使用 inputs * tf.math.sigmoid(inputs) 之后 就不用  tf.compat.v1.disable_eager_execution() 了,
      TensorBoard  那就也可以正常使用了,因为此处同时使用 tf.compat.v1.disable_eager_execution() 和 TensorBoard
      的时候,TensorBoard会报错:tensorflow.python.eager.core._FallbackException: This function does not handle the case of the path where all inputs are not already EagerTensors.

    """
    # EfficientNet 必须注意关闭默认的eager模式
    # tf.compat.v1.disable_eager_execution()

    # 使用 EfficientNet模型 进行迁移学习
    train_model()

data_gen文件夹 processing_data.py

import math
import os
import random
import numpy as np
from PIL import Image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical, Sequence
from sklearn.model_selection import train_test_split

from data_gen.random_eraser import get_random_eraser


class GarbageDataSequence(Sequence):
    """垃圾分类数据流,每次batch返回batch_size大小数据
    model.fit_generator使用
    """
    def __init__(self, img_paths, labels, batch_size, img_size, use_aug):
        print("20:",np.array(img_paths).shape) #batch_size
        print("21:",np.array(labels).shape) #[batch_size, 10]

        # 1、获取训练特征与目标值的合并结果 np.hstack( [batch_size, 1],  [batch_size, 40]) 结果为 [batch_size, 41]
        self.x_y = np.hstack((np.array(img_paths).reshape(len(img_paths), 1), np.array(labels)))
        print("22:",self.x_y.shape)
        print("23:",self.x_y)


        self.batch_size = batch_size
        self.img_size = img_size  # (300, 300)
        self.use_aug = use_aug
        self.alpha = 0.2
        # 随机擦出方法
        self.eraser = get_random_eraser(s_h=0.3, pixel_level=True)

    def __len__(self):
        return math.ceil(len(self.x_y) / self.batch_size)

    @staticmethod
    def center_img(img, size=None, fill_value=255):
        """改变图片尺寸到300x300,并且做填充使得图像处于中间位置
        """
        h, w = img.shape[:2]
        if size is None:
            size = max(h, w)
        shape = (size, size) + img.shape[2:]
        background = np.full(shape, fill_value, np.uint8)
        center_x = (size - w) // 2
        center_y = (size - h) // 2
        background[center_y:center_y + h, center_x:center_x + w] = img
        return background

    def preprocess_img(self, img_path):
        """处理每张图片,大小, 数据增强
        :param img_path:
        :return:
        """
        # 1、读取图片对应内容,做形状,内容处理, (h, w)
        img = Image.open(img_path)
        # [180, 200, 3]
        scale = self.img_size[0] / max(img.size[:2])
        img = img.resize((int(img.size[0] * scale), int(img.size[1] * scale)))
        img = img.convert('RGB')
        img = np.array(img)

        # 2、数据增强:如果是训练集进行数据增强操作
        # if self.use_aug:
        #
        #     # 1、随机擦处
        #     img = self.eraser(img)
        #
        #     # 2、翻转
        #     datagen = ImageDataGenerator(
        #         width_shift_range=0.05,
        #         height_shift_range=0.05,
        #         horizontal_flip=True,
        #         vertical_flip=True,
        #     )
        #     img = datagen.random_transform(img)

        # 4、处理一下形状 【300, 300, 3】
        # 改变到[300, 300] 建议不要进行裁剪操作,变形操作,保留数据增强之后的效果,填充到300x300
        img = self.center_img(img, self.img_size[0])
        return img

    def __getitem__(self, idx):

        # 1、获取当前批次idx对应的特征值和目标值
        batch_x = self.x_y[idx * self.batch_size: self.batch_size * (idx + 1), 0]
        batch_y = self.x_y[idx * self.batch_size: self.batch_size * (idx + 1), 1:]
        # print("batch_x:",batch_x)
        # print("batch_y:",batch_y)

        batch_x = np.array([self.preprocess_img(img_path) for img_path in batch_x])
        batch_y = np.array(batch_y).astype(np.float32)

        # 2、mixup
        # batch_x, batch_y = self.mixup(batch_x, batch_y)

        # 3、归一化处理
        batch_x = self.preprocess_input(batch_x)

        return batch_x, batch_y

    def on_epoch_end(self):
        np.random.shuffle(self.x_y)

    def mixup(self, batch_x, batch_y):
        """
        数据混合mixup
        :param batch_x: 要mixup的batch_X
        :param batch_y: 要mixup的batch_y
        :return: mixup后的数据
        """
        size = self.batch_size
        l = np.random.beta(self.alpha, self.alpha, size)

        X_l = l.reshape(size, 1, 1, 1)
        y_l = l.reshape(size, 1)

        X1 = batch_x
        Y1 = batch_y
        X2 = batch_x[::-1]
        Y2 = batch_y[::-1]

        X = X1 * X_l + X2 * (1 - X_l)
        Y = Y1 * y_l + Y2 * (1 - y_l)

        return X, Y

    def preprocess_input(self, x):
        """归一化处理样本特征值
        :param x:
        :return:
        """
        assert x.ndim in (3, 4)
        assert x.shape[-1] == 3

        MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255]
        STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255]

        x = x - np.array(MEAN_RGB)
        x = x / np.array(STDDEV_RGB)

        return x


def smooth_labels(y, smooth_factor=0.1):

    assert len(y.shape) == 2
    if 0 <= smooth_factor <= 1:
        y *= 1 - smooth_factor
        y += smooth_factor / y.shape[1]
    else:
        raise Exception(
            'Invalid label smoothing factor: ' + str(smooth_factor))
    return y


def data_from_sequence(train_data_dir, batch_size, num_classes, input_size):
    """读取本地数据到sequence
    :param train_data_dir: 训练数据目录
    :param batch_size: 批次大小
    :param num_classes: 总类别书40
    :param input_size: 输入图片大小(300, 300)
    :return:
    """
    # 1、读取txt文件,打乱文件顺序, .jpg, .txt
    # label_files = [os.path.join(train_data_dir, filename) for filename
    #                in os.listdir(train_data_dir) if filename.endswith('.txt')]
    # random.shuffle(label_files)

    # # 2、解析txt文件当中 特征值以及目标值(标签)
    # img_paths = []
    # labels = []
    #
    # for index, file_path in enumerate(label_files):
    #     with open(file_path, 'r') as f:
    #         line = f.readline()
    #
    #     line_split = line.strip().split(', ')
    #     # line '*.jpg, 0'
    #     if len(line_split) != 2:
    #         print("% 文件格式出错", (file_path))
    #         continue
    #
    #     img_name = line_split[0]
    #     label = int(line_split[1])
    #
    #     # 最后保存到所有的列表当中
    #     img_paths.append(os.path.join(train_data_dir, img_name))
    #     labels.append(label)
    # print(img_paths, labels)


    print("batch_size:",batch_size)
    print("num_classes:",num_classes)
    print("input_size:",input_size)


    lable = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
    lable_list = []
    Dataset_dir_list = []

    for i in lable:
        temp_list = []
        for filename in os.listdir(train_data_dir + i):
            temp_list.append(train_data_dir + str(i) + "/" + filename)
        Dataset_dir_list.append(temp_list)
        lable_list.append(np.full(len(temp_list), int(i)))  # np.full(5,10)

    print(len(lable_list))  # 10
    print(len(Dataset_dir_list))  # 10

    train_img_fileNames = []
    train_img_lables = []
    test_img_fileNames = []
    test_img_lables = []

    for i in lable:
        # 3、目标标签类别ont_hot编码转换, 平滑处理
        labels = to_categorical(lable_list[int(i)], num_classes)
        print("labels:", labels.shape)

        labels = smooth_labels(labels)
        print("smooth_labels:", labels.shape)

        """
        必须使用expand_dims在第一维,即每个路径字符串都封装多一层作为一个数组,那么第一维每个数组中都只有一个路径字符串。
        这样做才能配合二维的labels在train_test_split函数中进行切割使用
        """
        img = np.expand_dims(Dataset_dir_list[int(i)], axis=1)
        print("img.shape:",img.shape)
        # print("img:",img)

        x_train, x_test, y_train, y_test = train_test_split(img, labels, test_size=0.1, random_state=22)

        # x_train, x_test, y_train, y_test = train_test_split(Dataset_dir_list[int(i)], lable_list[int(i)], test_size=0.1, random_state=22)

        train_img_fileNames.append(x_train)
        train_img_lables.append(y_train)
        test_img_fileNames.append(x_test)
        test_img_lables.append(y_test)

    print("1:",len(train_img_fileNames)) #10
    print("2:",len(train_img_lables)) #10
    print("3:",len(test_img_fileNames)) #10
    print("4:",len(test_img_lables)) #10

    # print("5:",train_img_fileNames[0]) # 整个是 三维数组,取出来的[0] 是二维数组
    # print("6:",train_img_lables[0]) #整个是 三维数组,取出来的[0] 是二维数组
    # print("7:",test_img_fileNames[0]) #整个是 三维数组,取出来的[0] 是二维数组
    # print("8:",test_img_lables[0]) #整个是 三维数组,取出来的[0] 是二维数组

    Dataset_dir_lists = [f1 for train_img in train_img_fileNames for f in train_img for f1 in f]
    lable_lists = [f for train_lable in train_img_lables for f in train_lable]
    Dataset_dir_lists_test = [f1 for test_img in test_img_fileNames for f in test_img for f1 in f]
    lable_lists_test = [f for test_lables in test_img_lables for f in test_lables]

    print("9:",len(Dataset_dir_lists)) #1852
    print("10:",len(lable_lists))#1852
    print("11:",len(Dataset_dir_lists_test))#210
    print("12:",len(lable_lists_test)) #210

    print("13:",Dataset_dir_lists[0])
    print("14:",lable_lists[0])
    print("15:",Dataset_dir_lists_test[0])
    print("16:",lable_lists_test[0])

    # # 3、目标标签类别ont_hot编码转换, 平滑处理
    # labels = to_categorical(lable_list, num_classes)
    # labels = smooth_labels(labels)

    # 分割训练集合验证集合
    # train_img_paths, validation_img_paths, train_labels, validation_labels \
    #     = train_test_split(Dataset_dir_list, labels, test_size=0.15, random_state=0)
    # print(validation_img_paths)
    # print(train_labels, validation_labels)
    print("总共样本数: %d , 训练样本数: %d, 验证样本数: %d" % (len(Dataset_dir_lists)+len(Dataset_dir_lists_test),
                                                len(Dataset_dir_lists), len(Dataset_dir_lists_test)))

    """
    要求训练样本数/标签数和验证样本/标签数数都必须是可以整除batch_size的,
    否则在mixup中X = X1 * X_l + X2 * (1 - X_l)代码再进行矩阵广播运算的时候会报错,因为形状不一致,
    报错信息:ValueError: operands could not be broadcast together with shapes (不满batch_size大小,300,300,3) (batch_size,1,1,1)。
    正因为如此,所以要求训练样本数和验证样本数都必须是可以整除batch_size的,因为在一个epoch中遍历到最后一个step时,
    剩余的训练样本数不足以整除batch size,那么就会报错。
    """
    i = -2
    j = -2
    while 1:
        if (len(Dataset_dir_lists) % batch_size == 0):
            break
        else:
            Dataset_dir_lists = Dataset_dir_lists[:i]
            lable_lists = lable_lists[:i]
            i -= 1

    while 1:
        if (len(Dataset_dir_lists_test) % batch_size == 0):
            break
        else:
            Dataset_dir_lists_test = Dataset_dir_lists[:j]
            lable_lists_test = lable_lists_test[:j]
            j -= 1

    print("处理后的总共样本数: %d , 处理后的训练样本数: %d, 处理后的验证样本数: %d, 处理后的训练样本标签数: %d, 处理后的验证样本标签数: %d" %
          (len(Dataset_dir_lists)+len(Dataset_dir_lists_test), len(Dataset_dir_lists), len(Dataset_dir_lists_test)
           , len(lable_lists), len(lable_lists_test)
           ))

    # 4、Sequence调用测试
    train_sequence = GarbageDataSequence(Dataset_dir_lists, lable_lists, batch_size, [input_size, input_size], use_aug=True)
    validation_sequence = GarbageDataSequence(Dataset_dir_lists_test, lable_lists_test, batch_size, [input_size, input_size], use_aug=False)

    return train_sequence, validation_sequence


# if __name__ == '__main__':
#     train_data_dir = "../data/garbage_classify/train_data"
#     batch_size = 32
#
#     train_sequence, validation_sequence = data_from_sequence(train_data_dir, batch_size, num_classes=40, input_size=300)
#
#     for i in range(100):
#         print("第 %d 批次数据" % i)
#         batch_x, batch_y = train_sequence.__getitem__(i)
#         print(batch_x, batch_y)




data_gen文件夹 random_eraser.py

import numpy as np
import tensorflow as tf


def get_random_eraser(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=255, pixel_level=False):
    def eraser(input_img):
        img_h, img_w, img_c = input_img.shape
        p_1 = np.random.rand()

        if p_1 > p:
            return input_img

        while True:
            s = np.random.uniform(s_l, s_h) * img_h * img_w
            r = np.random.uniform(r_1, r_2)
            w = int(np.sqrt(s / r))
            h = int(np.sqrt(s * r))
            left = np.random.randint(0, img_w)
            top = np.random.randint(0, img_h)

            if left + w <= img_w and top + h <= img_h:
                break

        if pixel_level:
            c = np.random.uniform(v_l, v_h, (h, w, img_c))
        else:
            c = np.random.uniform(v_l, v_h)

        input_img[top:top + h, left:left + w, :] = c

        return input_img

    return eraser

utils文件夹 lr_scheduler.py

import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"


def cosine_decay_with_warmup(global_step,
                             learning_rate_base,
                             total_steps,
                             warmup_learning_rate=0.0,
                             warmup_steps=0,
                             hold_base_rate_steps=0):
    """
    每批次带有warmup余弦退火学习率计算
    :param global_step: 当前到达的步数
    :param learning_rate_base: warmup之后的基础学习率
    :param total_steps: 总需要批次数
    :param warmup_learning_rate: warmup开始的学习率
    :param warmup_steps:warmup学习率 步数
    :param hold_base_rate_steps: 预留总步数和warmup步数间隔
    :return:
    """
    if total_steps < warmup_steps:
        raise ValueError("总步数要大于wamup步数")
    # 1、余弦退火学习率计算
    learning_rate = 0.5 * learning_rate_base * (1 + np.cos(
        np.pi * (global_step - warmup_steps - hold_base_rate_steps) / float(total_steps - warmup_steps - hold_base_rate_steps)
    ))

    # 2、warmup之后的学习率计算
    # 预留步数阶段
    # 如果预留大于0,判断目前步数是否 > warmup步数+预留步数,是的话返回刚才上面计算的学习率,不是的话使用warmup之后的基础学习率
    learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps, learning_rate, learning_rate_base)
    # 3、warmup学习率计算,并判断大小
    # 第一个阶段的学习率计算
    if warmup_steps > 0:
        if learning_rate_base < warmup_learning_rate:
            raise ValueError("第二阶段学习率要大于第一阶段学习率")

        slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
        warmup_rate = slope * global_step + warmup_learning_rate
        learning_rate = np.where(global_step < warmup_steps, warmup_rate, learning_rate)
    # 4、如果最后当前到达的步数大于总步数,则归0,否则返回当前的计算出来的学习率(可能是warmup学习率也可能是余弦衰减结果)

    return np.where(global_step > total_steps, 0.0, learning_rate)


class WarmUpCosineDecayScheduler(tf.keras.callbacks.Callback):
    """带有warnup的余弦退火学习率实现
    """
    def __init__(self,
                 learning_rate_base,
                 total_steps,
                 global_step_init=0,
                 warmup_learning_rate=0.0,
                 warmup_steps=0,
                 hold_base_rate_steps=0,
                 verbose=0):

        super(WarmUpCosineDecayScheduler, self).__init__()
        self.learning_rate_base = learning_rate_base
        self.total_steps = total_steps
        self.global_step = global_step_init
        self.warmup_learning_rate = warmup_learning_rate
        self.warmup_steps = warmup_steps
        self.hold_base_rate_steps = hold_base_rate_steps
        # 是否在每次训练结束打印学习率
        self.verbose = verbose
        # 记录所有批次下来的每次准确的学习率,可以用于打印显示
        self.learning_rates = []

    def on_batch_end(self, batch, logs=None):

        # 记录当前训练到走到第几步数
        self.global_step = self.global_step + 1
        # 记录下所有每次的学习到列表,要统计划图可以使用

        lr = K.get_value(self.model.optimizer.lr)
        self.learning_rates.append(lr)

    def on_batch_begin(self, batch, logs=None):

        # 计算这批次开始的学习率 lr
        lr = cosine_decay_with_warmup(global_step=self.global_step,
                                      learning_rate_base=self.learning_rate_base,
                                      total_steps=self.total_steps,
                                      warmup_learning_rate=self.warmup_learning_rate,
                                      warmup_steps=self.warmup_steps,
                                      hold_base_rate_steps=self.hold_base_rate_steps)

        # 设置模型的学习率为lr
        K.set_value(self.model.optimizer.lr, lr)

        if self.verbose > 0:
            print('\n批次数 %05d: 设置学习率为'
                  ' %s.' % (self.global_step + 1, lr))


if __name__ == '__main__':
    # 1、创建模型
    model = Sequential()
    model.add(Dense(32, activation='relu', input_dim=100))
    model.add(Dense(10, activation='softmax'))
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    # 2、参数设置
    sample_count = 1000  # 样本数
    epochs = 4  # 总迭代次数
    warmup_epoch = 3  # warmup 迭代次数
    batch_size = 16  # 批次大小
    learning_rate_base = 0.0001  # warmup后的初始学习率
    total_steps = int(epochs * sample_count / batch_size)  # 总迭代批次步数
    warmup_steps = int(warmup_epoch * sample_count / batch_size)  # warmup总批次数

    # 3、创建测试数据
    data = np.random.random((sample_count, 100))
    labels = np.random.randint(10, size=(sample_count, 1))
    # 转换目标类别
    one_hot_labels = tf.keras.utils.to_categorical(labels, num_classes=10)

    # 5、创建余弦warmup调度器
    warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,
                                            total_steps=total_steps,
                                            warmup_learning_rate=4e-06,  # warmup开始学习率
                                            warmup_steps=warmup_steps,
                                            hold_base_rate_steps=0,
                                            )

    # 训练模型
    model.fit(data, one_hot_labels, epochs=epochs, batch_size=batch_size, verbose=0, callbacks=[warm_up_lr])

    print(warm_up_lr.learning_rates)

 

 


EfficientNet模型B0~B7 源码

initializers.py

import numpy as np
import tensorflow as tf
import keras.backend as K

from keras.initializers import Initializer
from keras.utils.generic_utils import get_custom_objects


class EfficientConv2DKernelInitializer(Initializer):
    """Initialization for convolutional kernels.
    The main difference with tf.variance_scaling_initializer is that
    tf.variance_scaling_initializer uses a truncated normal with an uncorrected
    standard deviation, whereas here we use a normal distribution. Similarly,
    tf.contrib.layers.variance_scaling_initializer uses a truncated normal with
    a corrected standard deviation.
    Args:
      shape: shape of variable
      dtype: dtype of variable
      partition_info: unused
    Returns:
      an initialization for the variable
    """

    def __call__(self, shape, dtype=K.floatx(), **kwargs):
        kernel_height, kernel_width, _, out_filters = shape
        fan_out = int(kernel_height * kernel_width * out_filters)
        return tf.random_normal(
            shape, mean=0.0, stddev=np.sqrt(2.0 / fan_out), dtype=dtype)


class EfficientDenseKernelInitializer(Initializer):
    """Initialization for dense kernels.
    This initialization is equal to
      tf.variance_scaling_initializer(scale=1.0/3.0, mode='fan_out',
                                      distribution='uniform').
    It is written out explicitly here for clarity.
    Args:
      shape: shape of variable
      dtype: dtype of variable
    Returns:
      an initialization for the variable
    """

    def __call__(self, shape, dtype=K.floatx(), **kwargs):
        """Initialization for dense kernels.
        This initialization is equal to
          tf.variance_scaling_initializer(scale=1.0/3.0, mode='fan_out',
                                          distribution='uniform').
        It is written out explicitly here for clarity.
        Args:
          shape: shape of variable
          dtype: dtype of variable
        Returns:
          an initialization for the variable
        """
        init_range = 1.0 / np.sqrt(shape[1])
        return tf.random_uniform(shape, -init_range, init_range, dtype=dtype)


conv_kernel_initializer = EfficientConv2DKernelInitializer()
dense_kernel_initializer = EfficientDenseKernelInitializer()


get_custom_objects().update({
    'EfficientDenseKernelInitializer': EfficientDenseKernelInitializer,
    'EfficientConv2DKernelInitializer': EfficientConv2DKernelInitializer,
})

 

layers.py

"""
import tensorflow as tf
import numpy as np

x=np.array([[1.,8.,7.],[10.,14.,3.],[1.,2.,4.]])
tf.math.sigmoid(x)
    <tf.Tensor: id=22, shape=(3, 3), dtype=float64, numpy=
    array([[0.73105858, 0.99966465, 0.99908895],
           [0.9999546 , 0.99999917, 0.95257413],
           [0.73105858, 0.88079708, 0.98201379]])>

tf.compat.v1.disable_eager_execution()
x=np.array([[1.,8.,7.],[10.,14.,3.],[1.,2.,4.]])     
tf.nn.swish(x)
----------------------------------------------------------------
1.tf.nn.swish(x) 等同于把 x * tf.sigmoid(beta * x) 封装了。
  如果使用了tf.nn.swish(x) 则需要同时使用tf.compat.v1.disable_eager_execution()。
  如果使用x * tf.sigmoid(beta * x)来代替tf.nn.swish(x)的话,则可以不使用tf.compat.v1.disable_eager_execution()。
2.但注意此处可能环境问题使用tf.nn.swish(x)的话会报错,所以此处使用x * tf.sigmoid(beta * x)来代替tf.nn.swish(x)
  报错信息如下:
    tensorflow/core/grappler/utils/graph_view.cc:830] No registered 'swish_f32' OpKernel for GPU devices compatible with node
   {{node swish_75/swish_f32}}  Registered:  <no registered kernels>
"""

import tensorflow as tf
import tensorflow.keras.backend as K
import tensorflow.keras.layers as KL
from tensorflow.keras.utils import get_custom_objects

"""
import tensorflow as tf
import numpy as np

x=np.array([[1.,8.,7.],[10.,14.,3.],[1.,2.,4.]])
tf.math.sigmoid(x)
    <tf.Tensor: id=22, shape=(3, 3), dtype=float64, numpy=
    array([[0.73105858, 0.99966465, 0.99908895],
           [0.9999546 , 0.99999917, 0.95257413],
           [0.73105858, 0.88079708, 0.98201379]])>

tf.compat.v1.disable_eager_execution()
x=np.array([[1.,8.,7.],[10.,14.,3.],[1.,2.,4.]])	 
tf.nn.swish(x)
----------------------------------------------------------------
1.tf.nn.swish(x) 等同于把 x * tf.sigmoid(beta * x) 封装了。
  如果使用了tf.nn.swish(x) 则需要同时使用tf.compat.v1.disable_eager_execution()。
  如果使用x * tf.sigmoid(beta * x)来代替tf.nn.swish(x)的话,则可以不使用tf.compat.v1.disable_eager_execution()。
2.但注意此处可能环境问题使用tf.nn.swish(x)的话会报错,所以此处使用x * tf.sigmoid(beta * x)来代替tf.nn.swish(x)
  报错信息如下:
    tensorflow/core/grappler/utils/graph_view.cc:830] No registered 'swish_f32' OpKernel for GPU devices compatible with node
   {{node swish_75/swish_f32}}  Registered:  <no registered kernels>
"""
class Swish(KL.Layer):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
    def call(self, inputs, **kwargs):
        # return tf.nn.swish(inputs)
        return inputs * tf.math.sigmoid(inputs)


class DropConnect(KL.Layer):

    def __init__(self, drop_connect_rate=0., **kwargs):
        super().__init__(**kwargs)
        self.drop_connect_rate = drop_connect_rate

    def call(self, inputs, training=None):

        def drop_connect():
            keep_prob = 1.0 - self.drop_connect_rate

            # Compute drop_connect tensor
            batch_size = tf.shape(inputs)[0]
            random_tensor = keep_prob
            random_tensor += tf.random.uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
            binary_tensor = tf.floor(random_tensor)
            output = tf.math.divide(inputs, keep_prob) * binary_tensor
            return output

        return K.in_train_phase(drop_connect, inputs, training=training)

    def get_config(self):
        config = super().get_config()
        config['drop_connect_rate'] = self.drop_connect_rate
        return config


get_custom_objects().update({
    'DropConnect': DropConnect,
    'Swish': Swish,
})

 

model.py

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for EfficientNet model.
[1] Mingxing Tan, Quoc V. Le
  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
  ICML'19, https://arxiv.org/abs/1905.11946
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import math
import numpy as np
import six
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

import tensorflow.keras.backend as K
import tensorflow.keras.models as KM
import tensorflow.keras.layers as KL
from tensorflow.keras.utils import get_file
from tensorflow.keras.initializers import Initializer
from .layers import Swish, DropConnect
from .params import get_model_params, IMAGENET_WEIGHTS
from .initializers import conv_kernel_initializer, dense_kernel_initializer


__all__ = ['EfficientNet', 'EfficientNetB0', 'EfficientNetB1', 'EfficientNetB2', 'EfficientNetB3',
           'EfficientNetB4', 'EfficientNetB5', 'EfficientNetB6', 'EfficientNetB7']

class ConvKernalInitializer(Initializer):
    def __call__(self, shape, dtype=K.floatx(), partition_info=None):
        """Initialization for convolutional kernels.
        The main difference with tf.variance_scaling_initializer is that
        tf.variance_scaling_initializer uses a truncated normal with an uncorrected
        standard deviation, whereas here we use a normal distribution. Similarly,
        tf.contrib.layers.variance_scaling_initializer uses a truncated normal with
        a corrected standard deviation.
        Args:
        shape: shape of variable
        dtype: dtype of variable
        partition_info: unused
        Returns:
        an initialization for the variable
        """
        del partition_info
        kernel_height, kernel_width, _, out_filters = shape
        fan_out = int(kernel_height * kernel_width * out_filters)
        return tf.random.normal(
            shape, mean=0.0, stddev=np.sqrt(2.0 / fan_out), dtype=dtype)


class DenseKernalInitializer(Initializer):
    def __call__(self, shape, dtype=K.floatx(), partition_info=None):
        """Initialization for dense kernels.
        This initialization is equal to
        tf.variance_scaling_initializer(scale=1.0/3.0, mode='fan_out',
                                        distribution='uniform').
        It is written out explicitly here for clarity.
        Args:
        shape: shape of variable
        dtype: dtype of variable
        partition_info: unused
        Returns:
        an initialization for the variable
        """
        del partition_info
        init_range = 1.0 / np.sqrt(shape[1])
        return tf.random_uniform(shape, -init_range, init_range, dtype=dtype)


def round_filters(filters, global_params):
    """Round number of filters based on depth multiplier."""
    orig_f = filters
    multiplier = global_params.width_coefficient
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    if not multiplier:
        return filters

    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_filters < 0.9 * filters:
        new_filters += divisor
    # print('round_filter input={} output={}'.format(orig_f, new_filters))
    return int(new_filters)


def round_repeats(repeats, global_params):
    """Round number of filters based on depth multiplier."""
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


def SEBlock(block_args, global_params):
    num_reduced_filters = max(
        1, int(block_args.input_filters * block_args.se_ratio))
    filters = block_args.input_filters * block_args.expand_ratio
    if global_params.data_format == 'channels_first':
        channel_axis = 1
        spatial_dims = [2, 3]
    else:
        channel_axis = -1
        spatial_dims = [1, 2]

    def block(inputs):
        x = inputs
        x = KL.Lambda(lambda a: K.mean(a, axis=spatial_dims, keepdims=True))(x)
        x = KL.Conv2D(
            num_reduced_filters,
            kernel_size=[1, 1],
            strides=[1, 1],
            kernel_initializer=ConvKernalInitializer(),
            padding='same',
            use_bias=True
        )(x)
        x = Swish()(x)
        # Excite
        x = KL.Conv2D(
            filters,
            kernel_size=[1, 1],
            strides=[1, 1],
            kernel_initializer=ConvKernalInitializer(),
            padding='same',
            use_bias=True
        )(x)
        x = KL.Activation('sigmoid')(x)
        out = KL.Multiply()([x, inputs])
        return out

    return block


def MBConvBlock(block_args, global_params, drop_connect_rate=None):
    batch_norm_momentum = global_params.batch_norm_momentum
    batch_norm_epsilon = global_params.batch_norm_epsilon

    if global_params.data_format == 'channels_first':
        channel_axis = 1
        spatial_dims = [2, 3]
    else:
        channel_axis = -1
        spatial_dims = [1, 2]

    has_se = (block_args.se_ratio is not None) and (
            block_args.se_ratio > 0) and (block_args.se_ratio <= 1)

    filters = block_args.input_filters * block_args.expand_ratio
    kernel_size = block_args.kernel_size

    def block(inputs):

        if block_args.expand_ratio != 1:
            x = KL.Conv2D(
                filters,
                kernel_size=[1, 1],
                strides=[1, 1],
                kernel_initializer=ConvKernalInitializer(),
                padding='same',
                use_bias=False
            )(inputs)
            x = KL.BatchNormalization(
                axis=channel_axis,
                momentum=batch_norm_momentum,
                epsilon=batch_norm_epsilon
            )(x)
            x = Swish()(x)
        else:
            x = inputs

        x = KL.DepthwiseConv2D(
            [kernel_size, kernel_size],
            strides=block_args.strides,
            depthwise_initializer=ConvKernalInitializer(),
            padding='same',
            use_bias=False
        )(x)
        x = KL.BatchNormalization(
            axis=channel_axis,
            momentum=batch_norm_momentum,
            epsilon=batch_norm_epsilon
        )(x)
        x = Swish()(x)

        if has_se:
            x = SEBlock(block_args, global_params)(x)

        # output phase

        x = KL.Conv2D(
            block_args.output_filters,
            kernel_size=[1, 1],
            strides=[1, 1],
            kernel_initializer=ConvKernalInitializer(),
            padding='same',
            use_bias=False
        )(x)
        x = KL.BatchNormalization(
            axis=channel_axis,
            momentum=batch_norm_momentum,
            epsilon=batch_norm_epsilon
        )(x)

        if block_args.id_skip:
            if all(
                    s == 1 for s in block_args.strides
            ) and block_args.input_filters == block_args.output_filters:
                # only apply drop_connect if skip presents.
                if drop_connect_rate:
                    x = DropConnect(drop_connect_rate)(x)
                x = KL.Add()([x, inputs])
        return x

    return block


def EfficientNet(input_shape, block_args_list, global_params, include_top=True, pooling=None):
    batch_norm_momentum = global_params.batch_norm_momentum
    batch_norm_epsilon = global_params.batch_norm_epsilon
    if global_params.data_format == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = -1

    # Stem part
    inputs = KL.Input(shape=input_shape)
    x = inputs
    x = KL.Conv2D(
        filters=round_filters(32, global_params),
        kernel_size=[3, 3],
        strides=[2, 2],
        kernel_initializer=ConvKernalInitializer(),
        padding='same',
        use_bias=False
    )(x)
    x = KL.BatchNormalization(
        axis=channel_axis,
        momentum=batch_norm_momentum,
        epsilon=batch_norm_epsilon
    )(x)
    x = Swish()(x)

    # Blocks part
    block_idx = 1
    n_blocks = sum([block_args.num_repeat for block_args in block_args_list])
    drop_rate = global_params.drop_connect_rate or 0
    drop_rate_dx = drop_rate / n_blocks

    for block_args in block_args_list:
        assert block_args.num_repeat > 0
        # Update block input and output filters based on depth multiplier.
        block_args = block_args._replace(
            input_filters=round_filters(block_args.input_filters, global_params),
            output_filters=round_filters(block_args.output_filters, global_params),
            num_repeat=round_repeats(block_args.num_repeat, global_params)
        )

        # The first block needs to take care of stride and filter size increase.
        x = MBConvBlock(block_args, global_params,
                        drop_connect_rate=drop_rate_dx * block_idx)(x)
        block_idx += 1

        if block_args.num_repeat > 1:
            block_args = block_args._replace(input_filters=block_args.output_filters, strides=[1, 1])

        for _ in xrange(block_args.num_repeat - 1):
            x = MBConvBlock(block_args, global_params,
                            drop_connect_rate=drop_rate_dx * block_idx)(x)
            block_idx += 1

    # Head part
    x = KL.Conv2D(
        filters=round_filters(1280, global_params),
        kernel_size=[1, 1],
        strides=[1, 1],
        kernel_initializer=ConvKernalInitializer(),
        padding='same',
        use_bias=False
    )(x)
    x = KL.BatchNormalization(
        axis=channel_axis,
        momentum=batch_norm_momentum,
        epsilon=batch_norm_epsilon
    )(x)
    x = Swish()(x)

    if include_top:
        x = KL.GlobalAveragePooling2D(data_format=global_params.data_format)(x)
        if global_params.dropout_rate > 0:
            x = KL.Dropout(global_params.dropout_rate)(x)
        x = KL.Dense(global_params.num_classes, kernel_initializer=DenseKernalInitializer())(x)
        x = KL.Activation('softmax')(x)
    else:
        if pooling == 'avg':
            x = KL.GlobalAveragePooling2D(data_format=global_params.data_format)(x)
        elif pooling == 'max':
            x = KL.GlobalMaxPooling2D(data_format=global_params.data_format)(x)

    outputs = x
    model = KM.Model(inputs, outputs)

    return model


def _get_model_by_name(model_name, input_shape=None, include_top=True, weights=None, classes=1000, pooling=None):
    """Re-Implementation of EfficientNet for Keras
    Reference:
        https://arxiv.org/abs/1807.11626
    Args:
        input_shape: optional, if ``None`` default_input_shape is used
            EfficientNetB0 - (224, 224, 3)
            EfficientNetB1 - (240, 240, 3)
            EfficientNetB2 - (260, 260, 3)
            EfficientNetB3 - (300, 300, 3)
            EfficientNetB4 - (380, 380, 3)
            EfficientNetB5 - (456, 456, 3)
            EfficientNetB6 - (528, 528, 3)
            EfficientNetB7 - (600, 600, 3)
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet).
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.
        pooling: optional [None, 'avg', 'max'], if ``include_top=False``
            add global pooling on top of the network
            - avg: GlobalAveragePooling2D
            - max: GlobalMaxPooling2D
    Returns:
        A Keras model instance.
    """
    if weights not in {None, 'imagenet'}:
        raise ValueError('Parameter `weights` should be one of [None, "imagenet"]')

    if weights == 'imagenet' and model_name not in IMAGENET_WEIGHTS:
        raise ValueError('There are not pretrained weights for {} model.'.format(model_name))

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` and `include_top`'
                         ' `classes` should be 1000')

    block_agrs_list, global_params, default_input_shape = get_model_params(
        model_name, override_params={'num_classes': classes}
    )

    if input_shape is None:
        input_shape = (default_input_shape, default_input_shape, 3)

    model = EfficientNet(input_shape, block_agrs_list, global_params, include_top=include_top, pooling=pooling)
    model._name = model_name

    if weights:
        if not include_top:
            weights_name = model_name + '-notop'
        else:
            weights_name = model_name
        weights = IMAGENET_WEIGHTS[weights_name]
        weights_path = get_file(
            weights['name'],
            weights['url'],
            cache_subdir='models',
            md5_hash=weights['md5'],
        )
        model.load_weights(weights_path)

    return model


def EfficientNetB0(include_top=True, input_shape=None, weights=None, classes=1000, pooling=None):
    return _get_model_by_name('efficientnet-b0', include_top=include_top, input_shape=input_shape,
                              weights=weights, classes=classes, pooling=pooling)


def EfficientNetB1(include_top=True, input_shape=None, weights=None, classes=1000, pooling=None):
    return _get_model_by_name('efficientnet-b1', include_top=include_top, input_shape=input_shape,
                              weights=weights, classes=classes, pooling=pooling)


def EfficientNetB2(include_top=True, input_shape=None, weights=None, classes=1000, pooling=None):
    return _get_model_by_name('efficientnet-b2', include_top=include_top, input_shape=input_shape,
                              weights=weights, classes=classes, pooling=pooling)


def EfficientNetB3(include_top=True, input_shape=None, weights=None, classes=1000, pooling=None):
    return _get_model_by_name('efficientnet-b3', include_top=include_top, input_shape=input_shape,
                              weights=weights, classes=classes, pooling=pooling)


def EfficientNetB4(include_top=True, input_shape=None, weights=None, classes=1000, pooling=None):
    return _get_model_by_name('efficientnet-b4', include_top=include_top, input_shape=input_shape,
                              weights=weights, classes=classes, pooling=pooling)


def EfficientNetB5(include_top=True, input_shape=None, weights=None, classes=1000, pooling=None):
    return _get_model_by_name('efficientnet-b5', include_top=include_top, input_shape=input_shape,
                              weights=weights, classes=classes, pooling=pooling)


def EfficientNetB6(include_top=True, input_shape=None, weights=None, classes=1000, pooling=None):
    return _get_model_by_name('efficientnet-b6', include_top=include_top, input_shape=input_shape,
                              weights=weights, classes=classes, pooling=pooling)


def EfficientNetB7(include_top=True, input_shape=None, weights=None, classes=1000, pooling=None):
    return _get_model_by_name('efficientnet-b7', include_top=include_top, input_shape=input_shape,
                              weights=weights, classes=classes, pooling=pooling)


EfficientNetB0.__doc__ = _get_model_by_name.__doc__
EfficientNetB1.__doc__ = _get_model_by_name.__doc__
EfficientNetB2.__doc__ = _get_model_by_name.__doc__
EfficientNetB3.__doc__ = _get_model_by_name.__doc__
EfficientNetB4.__doc__ = _get_model_by_name.__doc__
EfficientNetB5.__doc__ = _get_model_by_name.__doc__
EfficientNetB6.__doc__ = _get_model_by_name.__doc__
EfficientNetB7.__doc__ = _get_model_by_name.__doc__

 

params.py

import os
import re
import collections


IMAGENET_WEIGHTS = {

    'efficientnet-b0': {
        'name': 'efficientnet-b0_imagenet_1000.h5',
        'url': 'https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b0_imagenet_1000.h5',
        'md5': 'bca04d16b1b8a7c607b1152fe9261af7',
    },

    'efficientnet-b0-notop': {
        'name': 'efficientnet-b0_imagenet_1000_notop.h5',
        'url': 'https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b0_imagenet_1000_notop.h5',
        'md5': '45d2f3b6330c2401ef66da3961cad769',
    },

    'efficientnet-b1': {
        'name': 'efficientnet-b1_imagenet_1000.h5',
        'url': 'https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b1_imagenet_1000.h5',
        'md5': 'bd4a2b82f6f6bada74fc754553c464fc',
    },

    'efficientnet-b1-notop': {
        'name': 'efficientnet-b1_imagenet_1000_notop.h5',
        'url': 'https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b1_imagenet_1000_notop.h5',
        'md5': '884aed586c2d8ca8dd15a605ec42f564',
    },

    'efficientnet-b2': {
        'name': 'efficientnet-b2_imagenet_1000.h5',
        'url': 'https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b2_imagenet_1000.h5',
        'md5': '45b28b26f15958bac270ab527a376999',
    },

    'efficientnet-b2-notop': {
        'name': 'efficientnet-b2_imagenet_1000_notop.h5',
        'url': 'https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b2_imagenet_1000_notop.h5',
        'md5': '42fb9f2d9243d461d62b4555d3a53b7b',
    },

    'efficientnet-b3': {
        'name': 'efficientnet-b3_imagenet_1000.h5',
        'url': 'https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b3_imagenet_1000.h5',
        'md5': 'decd2c8a23971734f9d3f6b4053bf424',
    },

    'efficientnet-b3-notop': {
        'name': 'efficientnet-b3_imagenet_1000_notop.h5',
        'url': 'https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b3_imagenet_1000_notop.h5',
        'md5': '1f7d9a8c2469d2e3d3b97680d45df1e1',
    },

}


GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'data_format',
    'num_classes', 'width_coefficient', 'depth_coefficient',
    'depth_divisor', 'min_depth', 'drop_connect_rate',
])
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)

BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'strides', 'se_ratio'
])
# defaults will be a public argument for namedtuple in Python 3.7
# https://docs.python.org/3/library/collections.html#collections.namedtuple
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)


def efficientnet_params(model_name):
  """Get efficientnet params based on model name."""
  params_dict = {
      # (width_coefficient, depth_coefficient, resolution, dropout_rate)
      'efficientnet-b0': (1.0, 1.0, 224, 0.2),
      'efficientnet-b1': (1.0, 1.1, 240, 0.2),
      'efficientnet-b2': (1.1, 1.2, 260, 0.3),
      'efficientnet-b3': (1.2, 1.4, 300, 0.3),
      'efficientnet-b4': (1.4, 1.8, 380, 0.4),
      'efficientnet-b5': (1.6, 2.2, 456, 0.4),
      'efficientnet-b6': (1.8, 2.6, 528, 0.5),
      'efficientnet-b7': (2.0, 3.1, 600, 0.5),
  }
  return params_dict[model_name]


class BlockDecoder(object):
  """Block Decoder for readability."""

  def _decode_block_string(self, block_string):
    """Gets a block through a string notation of arguments."""
    assert isinstance(block_string, str)
    ops = block_string.split('_')
    options = {}
    for op in ops:
      splits = re.split(r'(\d.*)', op)
      if len(splits) >= 2:
        key, value = splits[:2]
        options[key] = value

    if 's' not in options or len(options['s']) != 2:
      raise ValueError('Strides options should be a pair of integers.')

    return BlockArgs(
        kernel_size=int(options['k']),
        num_repeat=int(options['r']),
        input_filters=int(options['i']),
        output_filters=int(options['o']),
        expand_ratio=int(options['e']),
        id_skip=('noskip' not in block_string),
        se_ratio=float(options['se']) if 'se' in options else None,
        strides=[int(options['s'][0]), int(options['s'][1])])

  def _encode_block_string(self, block):
    """Encodes a block to a string."""
    args = [
        'r%d' % block.num_repeat,
        'k%d' % block.kernel_size,
        's%d%d' % (block.strides[0], block.strides[1]),
        'e%s' % block.expand_ratio,
        'i%d' % block.input_filters,
        'o%d' % block.output_filters
    ]
    if block.se_ratio > 0 and block.se_ratio <= 1:
      args.append('se%s' % block.se_ratio)
    if block.id_skip is False:
      args.append('noskip')
    return '_'.join(args)

  def decode(self, string_list):
    """Decodes a list of string notations to specify blocks inside the network.
    Args:
      string_list: a list of strings, each string is a notation of block.
    Returns:
      A list of namedtuples to represent blocks arguments.
    """
    assert isinstance(string_list, list)
    blocks_args = []
    for block_string in string_list:
      blocks_args.append(self._decode_block_string(block_string))
    return blocks_args

  def encode(self, blocks_args):
    """Encodes a list of Blocks to a list of strings.
    Args:
      blocks_args: A list of namedtuples to represent blocks arguments.
    Returns:
      a list of strings, each string is a notation of block.
    """
    block_strings = []
    for block in blocks_args:
      block_strings.append(self._encode_block_string(block))
    return block_strings


def efficientnet(width_coefficient=None,
                 depth_coefficient=None,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2):
  """Creates a efficientnet model."""
  blocks_args = [
      'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25',
      'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25',
      'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25',
      'r1_k3_s11_e6_i192_o320_se0.25',
  ]
  global_params = GlobalParams(
      batch_norm_momentum=0.99,
      batch_norm_epsilon=1e-3,
      dropout_rate=dropout_rate,
      drop_connect_rate=drop_connect_rate,
      data_format='channels_last',
      num_classes=1000,
      width_coefficient=width_coefficient,
      depth_coefficient=depth_coefficient,
      depth_divisor=8,
      min_depth=None)
  decoder = BlockDecoder()
  return decoder.decode(blocks_args), global_params


def get_model_params(model_name, override_params=None):
  """Get the block args and global params for a given model."""
  if model_name.startswith('efficientnet'):
    width_coefficient, depth_coefficient, input_shape, dropout_rate = (
        efficientnet_params(model_name))
    blocks_args, global_params = efficientnet(
        width_coefficient, depth_coefficient, dropout_rate)
  else:
    raise NotImplementedError('model name is not pre-defined: %s' % model_name)

  if override_params:
    # ValueError will be raised here if override_params has fields not included
    # in global_params.
    global_params = global_params._replace(**override_params)

  #print('global_params= %s', global_params)
  #print('blocks_args= %s', blocks_args)
  return blocks_args, global_params, input_shape

 

preprocessing.py

import numpy as np
from skimage.transform import resize

MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255]
STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255]

MAP_INTERPOLATION_TO_ORDER = {
    'nearest': 0,
    'bilinear': 1,
    'biquadratic': 2,
    'bicubic': 3,
}


def center_crop_and_resize(image, image_size, crop_padding=32, interpolation='bicubic'):
    assert image.ndim in {2, 3}
    assert interpolation in MAP_INTERPOLATION_TO_ORDER.keys()

    h, w = image.shape[:2]

    padded_center_crop_size = int((image_size / (image_size + crop_padding)) * min(h, w))
    offset_height = ((h - padded_center_crop_size) + 1) // 2
    offset_width = ((w - padded_center_crop_size) + 1) // 2

    image_crop = image[offset_height:padded_center_crop_size + offset_height,
                       offset_width:padded_center_crop_size + offset_width]
    resized_image = resize(
        image_crop,
        (image_size, image_size),
        order=MAP_INTERPOLATION_TO_ORDER[interpolation],
        preserve_range=True,
    )

    return resized_image


def preprocess_input(x):
    assert x.ndim in (3, 4)
    assert x.shape[-1] == 3

    x = x - np.array(MEAN_RGB)
    x = x / np.array(STDDEV_RGB)

    return x

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章