【Linear Algebra】Eigen Vectors and Eigen Values

Introduction

In the last post, we require you should have knowledge about Linear algebra, like eigen vectors and eigen values. So now, we can learn what eigen vectors and eigen values is.

Eigen Vectors and Eigen Values

For a arbitary square matirx AA, it is exist an eigen vector and eigen value make this equation true.
Av=λvAv = \lambda v
where the vv is the eigen vector and the λ\lambda is the eigen value.

So, how do we find these things?

Firstly, we know this equation must be true.
Av=λvAv=\lambda v
Now, let us put an identity matrix in right side.
Av=λIvAv=\lambda I v
Then, bring all to left side.
AvλIv=0Av-\lambda Iv=0
If vv is non-zero then we can change the thing of left side to the determinant.
AλI=0|A-\lambda I|=0
Then we can solve for λ\lambda using this determinant.

Example: Solve for λ\lambda
Start with AλI=0|A-\lambda I|=0 :
[6345]λ[1001]=0\begin{vmatrix} \begin {bmatrix} -6 & 3\\ 4 & 5\\ \end{bmatrix} -\lambda \begin {bmatrix} 1 & 0\\ 0 & 1\\ \end{bmatrix}\end{vmatrix} =0
Then:
6λ345λ=0\begin{vmatrix} -6-\lambda & 3\\ 4 & 5-\lambda \end{vmatrix} =0
Gets:
(6λ)(5λ)3×4=0(-6-\lambda)(5-\lambda)-3\times4=0
Then get this quadratic equation:
λ2+λ42=0\lambda^2+\lambda-42=0
And solve for λ\lambda:
λ1=7λ2=6\lambda_1=-7 \quad \lambda_2=6
Finally, there two possible eigen values.

Now we get the eigenvalues, then we can solve for their matching eigen vectors.

Start with:
Av=λvAv=\lambda v
Put in the value we know:
[6345][xy]=6[xy]\begin {bmatrix} -6 & 3\\ 4 & 5\\ \end{bmatrix} \begin {bmatrix} x\\ y\\ \end{bmatrix} = 6 \begin {bmatrix} x\\ y\\ \end{bmatrix}
Then we can two equations:
6x+3y= 6x4x+5y= 6y\begin{aligned} -6x+3y =&\ 6x\\ 4x+5y =&\ 6y\\ \end{aligned}
Then we get y=4xy=4x, so the eigen vector is any non-zero multiple of this:
[14]\begin {bmatrix} 1\\ 4\\ \end{bmatrix}
So now we can get the solution:
Av=[6345][14]=[624]Av = \begin {bmatrix} -6 & 3\\ 4 & 5\\ \end{bmatrix}\begin {bmatrix} 1\\ 4\\ \end{bmatrix} = \begin {bmatrix} 6\\ 24\\ \end{bmatrix}
And:
λv=6[14]=[624]\lambda v = 6 \begin {bmatrix} 1\\ 4\\ \end{bmatrix} = \begin {bmatrix} 6\\ 24\\ \end{bmatrix}
So, get Av=λvAv=\lambda v

Finally, we get the solution of eigen values and eigen vector.
Now, we know how to solve for eigen values and eigen vector of a arbitary matrix.
Try to find the eigen vector for the other eigenvalue of 7-7.

Renferences

Eigenvector and Eigenvalue

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章