半導體基礎知識(1):材料和器件

寫在前面

2020年5月26晚記,昨天剛畢業答辯結束,即使通過了,由於後面還有很大概率繼續抽取校盲,論文還是要添加以及修改。
在仿真的過程中,由於電腦性能太差,以及MATLAB仿真時間過長,這個等待的過程中,閒來無事,不如看看文章,總體而言,英文文章質量更佳,這裏不如翻譯一些基礎內容來消遣等待的時光。

譯文源鏈接:Semiconductor Basics: Materials and Devices

原文是一個視頻,但是由於是國外網站上的視頻(YouTube),因此加載是個問題,好在有正文。
該視頻教程討論了基本的半導體概念,並介紹了我們用來將半導體變成有用的電子組件的技術。
在本視頻教程中,我們將討論半導體材料以及它們如何成爲有用的電子組件,即通過半導體摻雜。

正文

什麼是半導體?

“半導體”一詞已經與先進的電子技術聯繫在一起,後者在二十世紀下半葉迅速改變了人類的生活。 但是,就其本身而言,半導體並不十分引人注目:它只是一種具有中等導電性的材料-也就是說,它的導電性比導體小,但比絕緣體大。

熱能使價電子脫離半導體的晶格結構,從而變成“自由”電子。 這些移動電子是可以在施加的電場的影響下移動的負電荷,這些自由電子留下的空穴起移動正電荷的作用。 電子和空穴都參與半導體電流,並且半導體的電學性質受材料中存在的自由電子和空穴的數量影響。
李銳博恩
左側的圖表示半導體的規則晶格,而右側的圖包括電子-空穴對。

普通的未經修飾的半導體無法提供有用的電氣功能。 將半導體轉變爲技術革命手段的第一步稱爲摻雜。

半導體摻雜

我們可以通過將其他材料注入晶格結構來控制半導體中載流子的數量。 更具體地說,我們注入具有不同價電子數量的材料。

假設我們的半導體是硅(Si),它是IV組元素,因此具有四個價電子。 如上圖所示,硅原子通過共價鍵結合成規則的晶格結構。 諸如磷(P)之類的V組元素具有五個價電子,如果我們將磷注入硅中,每個注入的原子都會向半導體的晶格中引入一個自由電子:

在這裏插入圖片描述
用V族元素摻雜會引入自由電子。

在這種情況下,磷起摻雜劑的作用,硅成爲n型半導體:它通過摻雜獲得了額外的自由電子,當施加電場時,電流將主要歸因於具有負電荷的電子 。 因此,在n型半導體中,電子是多數載流子,空穴是少數載流子。

另一方面,如果我們用III族元素(例如硼(B))摻雜,則每個摻雜原子都會引入一個額外的空穴。 這將硅變成p型半導體:空穴的數量超過了自由電子的數量,電流的流動將主要歸因於正電荷的運動。 因此,在p型半導體中,空穴是多數載流子,電子是少數載流子。

在這裏插入圖片描述
用III族元素摻雜會引入空穴。

注入元素並不是摻雜過程中唯一的變量。 我們還可以控制摻雜劑的濃度,從而影響半導體的電學行爲。 當半導體包含相對較高濃度的摻雜原子時,我們稱其爲重摻雜。 如果它包含相對較低濃度的摻雜劑原子,則它是輕度摻雜的。 例如,將在以後的教程中討論的場效應晶體管將重摻雜硅用作源極和漏極區域。

結論

如果目標是製造有用的電子組件,那麼摻雜材料本身並沒有比原始半導體更好。 但是,當我們將n型半導體與p型半導體相鄰放置時,一切都會改變。 此結構稱爲pn結,是下一個教程的主題。

原文附錄

This video tutorial discusses basic semiconductor concepts and introduces the techniques that we use to turn semiconductors into useful electronic components.
In this video tutorial, we’ll discuss semiconductor materials and how they become useful electronic components—namely, through semiconductor doping.

What Is a Semiconductor?

The word “semiconductor” has become associated with the sophisticated electronic technology that rapidly transformed human life during the second half of the twentieth century. However, on its own, a semiconductor is rather unremarkable: it is simply a material that exhibits mediocre conductivity—that is, it’s less conductive than a conductor but more conductive than an insulator.

Thermal energy causes valence electrons to break out of a semiconductor’s lattice structure and thereby become “free” electrons. These mobile electrons are negative charges that can move under the influence of an applied electric field, and the holes left behind by these free electrons function as mobile positive charges. Both electrons and holes participate in semiconductor current flow, and the electrical properties of a semiconductor are affected by the number of free electrons and holes that are present in the material.

Reborn_Lee
The diagram on the left represents the regular crystal lattice of a semiconductor, and the diagram on the right includes an electron-hole pair.

Ordinary unmodified semiconductors don’t offer much in the way of useful electrical functionality. The first step in turning a semiconductor into a means of technological revolution is called doping.

Semiconductor Doping

We can control the quantity of charge carriers in a semiconductor by injecting other materials into the lattice structure. More specifically, we inject materials that have a different number of valence electrons.

Let’s say that our semiconductor is silicon (Si), which is a group IV element and thus has four valence electrons. As shown in the previous diagram, silicon atoms combine via covalent bonding into a regular lattice structure. A group V element such as phosphorus § has five valence electrons, and if we inject phosphorus into the silicon, each injected atom will introduce a free electron into the semiconductor’s crystal lattice:

在這裏插入圖片描述
Doping with a group V element introduces free electrons.

In this situation, phosphorus functions as a dopant and the silicon becomes an n-type semiconductor: it has received additional free electrons through doping, and when an electric field is applied, current flow will be due primarily to electrons, which have a negative charge. Thus, in an n-type semiconductor, electrons are the majority carriers and holes are the minority carriers.

If, on the other hand, we dope with a group III element such as boron (B), each doping atom will introduce an additional hole. This turns the silicon into a p-type semiconductor: holes outnumber free electrons, and current flow will be due primarily to the movement of positive charges. Thus, in a p-type semiconductor, holes are the majority carriers and electrons are the minority carriers.

在這裏插入圖片描述
Doping with a group III element introduces holes.

The injected element is not the only variable in doping procedures. We can also control the dopant concentration, which in turn influences the electrical behavior of a semiconductor. When a semiconductor contains a relatively high concentration of dopant atoms, we call it heavily doped. If it contains a relatively low concentration of dopant atoms, it is lightly doped. For example, field-effect transistors, which will be discussed in a future tutorial, use heavily doped silicon for the source and drain regions.

Conclusion

If the goal is to create useful electronic components, a doped material by itself is not really any better than the original semiconductor. However, when we place an n-type semiconductor adjacent to a p-type semiconductor, everything changes. This structure, called a pn junction, is the subject of the next tutorial.

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章