Android 5 消息機制源碼分析

消息模型

基本要素:
消息隊列、消息發送、消息讀取、消息分發、消息循環線程。
操作系統原理中的生產者線程和消費者線程有着類似的過程:
生產者消費者線程消息模型

Android中的消息機制跟這個很類似,關鍵的幾個名詞如下:

  • Handler
  • Message
  • Message Queue
  • Looper

總覽

Android消息機制圖
這裏是從網上找的一張圖,在此感謝原作者。這裏使用的是Android 5.1源碼。
從這張圖上我們可以大致看出Android中消息的執行過程。
Handler是依附於當前線程的,它在創建的時候,會使用當前線程的Looper來構造內部的消息循環系統。在Handler的運行過程中,由Handler發送一個Message給Handler所在線程的MessageQueue消息隊列,Looper負責對消息進行轉發處理。一個線程對應的Handler可以有多個,但是MessageQueue和Looper則只有一個。

Message

Message實現了Parcelable接口,是一個可序列化的類。
構造方法是一個空方法,註釋中可以看到,建議使用obtian()去獲取一個Message實例而不是通過new:

// sometimes we store linked lists of these things
/*package*/ Message next;
private static Message sPool;
private static int sPoolSize = 0;
private static final int MAX_POOL_SIZE = 50;

/** Constructor (but the preferred way to get a Message is to call {@link #obtain() Message.obtain()}).
*/
public Message() {
}

/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
public static Message obtain() {
   synchronized (sPoolSync) {
       if (sPool != null) {
           Message m = sPool;
           sPool = m.next;
           m.next = null;
           m.flags = 0; // clear in-use flag
           sPoolSize--;
           return m;
        }
   }
   return new Message();
}

這裏的實現代碼比較簡單,第一次的時候sPool值爲null,也就是會執行new操作,創建一個Message對象,之後會把這個對象進行復用,通過Message的結構可以看到,維持了一個類似鏈表的複用關係。sPool代表接下來要被重用的Message對象,sPoolSize表示被重用的對象數目;MAX_POOL_SIZE是pool的最大容量,默認爲50個。

public void recycle() {
   if (isInUse()) {
      if (gCheckRecycle) {
           throw new IllegalStateException("This message cannot be recycled because it "
                 + "is still in use.");
      }
      return;
   }
   recycleUnchecked();
}

/**
* Recycles a Message that may be in-use.
* Used internally by the MessageQueue and Looper when disposing of queued Messages.
*/
void recycleUnchecked() {
    // Mark the message as in use while it remains in the recycled object pool.
    // Clear out all other details.
    flags = FLAG_IN_USE;
    what = 0;
    arg1 = 0;
    arg2 = 0;
    obj = null;
    replyTo = null;
    sendingUid = -1;
    when = 0;
    target = null;
    callback = null;
    data = null;

    synchronized (sPoolSync) {
        if (sPoolSize < MAX_POOL_SIZE) {
           next = sPool;
           sPool = this;
           sPoolSize++;
        }
     }
 }

回收操作會導致每次被使用完畢的Message進入複用鏈。

MessageQueue

消息隊列,這裏就是一個單鏈表。學過數據結構大家都知道,對於鏈表的基本操作主要就是訪問,插入和刪除。這裏主要是從消息隊列中獲取消息,以及往隊列中插入一個消息。

    private final boolean mQuitAllowed;
    @SuppressWarnings("unused")
    private long mPtr; // used by native code
    Message mMessages;//消息隊列
    private final ArrayList<IdleHandler> mIdleHandlers = new ArrayList<IdleHandler>();
    private IdleHandler[] mPendingIdleHandlers;
    private boolean mQuitting;

    // Indicates whether next() is blocked waiting in pollOnce() with a non-zero timeout.
    private boolean mBlocked;

    // The next barrier token.
    // Barriers are indicated by messages with a null target whose arg1 field carries the token.
    private int mNextBarrierToken;

    private native static long nativeInit();
    private native static void nativeDestroy(long ptr);
    private native static void nativePollOnce(long ptr, int timeoutMillis);
    private native static void nativeWake(long ptr);
    private native static boolean nativeIsIdling(long ptr);

mMessages指向消息隊列。這列聲明瞭幾個Native方法,意味着Java層的實現依賴於C層。

首先看一下進隊的操作:

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w("MessageQueue", e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            // 新消息會插入到鏈表的表頭,意味着隊列需要調整喚醒時間
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            //插入到隊列中間通常不用喚醒事件隊列,除非在隊頭部有一個同步分隔欄,並且這個消息是隊列中最早進來的異步消息
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}

首先判斷了消息的target(其實就是發送消息的Handler)是否存在,又檢查了當前這個消息是否正在使用。校驗過了,會設置msg.markInUse();表明當前消息在使用中。接着就是插入單鏈表的操作了,判斷鏈表當前是否爲空,爲空則插入的消息成爲隊首元素,採用頭插法進行插入,不過需要注意同步分隔欄。最後,如果needWake爲true,調用native方法nativeWake()喚醒。

看看這個函數做了啥:
【frameworks/base/core/jni/android_os_MessageQueue.cpp】

static JNINativeMethod gMessageQueueMethods[] = {
    /* name, signature, funcPtr */
    { "nativeInit", "()J", (void*)android_os_MessageQueue_nativeInit },
    { "nativeDestroy", "(J)V", (void*)android_os_MessageQueue_nativeDestroy },
    { "nativePollOnce", "(JI)V", (void*)android_os_MessageQueue_nativePollOnce },
    { "nativeWake", "(J)V", (void*)android_os_MessageQueue_nativeWake },
    { "nativeIsIdling", "(J)Z", (void*)android_os_MessageQueue_nativeIsIdling }
};

可以看到jni註冊到了函數android_os_MessageQueue_nativeWake :

static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    return nativeMessageQueue->wake();
}

void NativeMessageQueue::wake() {
    mLooper->wake();
}

這裏一看,又轉到了Looper中去了。
【system/core/libutils/Looper.cpp】

void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ wake", this);
#endif

    ssize_t nWrite;
    do {
        nWrite = write(mWakeWritePipeFd, "W", 1);
    } while (nWrite == -1 && errno == EINTR);

    if (nWrite != 1) {
        if (errno != EAGAIN) {
            ALOGW("Could not write wake signal, errno=%d", errno);
        }
    }
}

這裏向mWakeWritePipeFd管道里中寫了個”W”。

接下來看看出隊操作:

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;// 取消息隊列裏當前第一個消息
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                // 如果從隊列裏拿到的msg是個“同步分割欄”,那麼就尋找其後第一個“異步消息”
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;// 重置消息隊列的頭部
                    }
                    msg.next = null;
                    if (false) Log.v("MessageQueue", "Returning message: " + msg);
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf("MessageQueue", "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

這個方法有點兒長,主要就是從消息隊列中取出一個消息,並從隊列中移除。從for(;;)可以看出,這個是一個無線循環。nativePollOnce(ptr, nextPollTimeoutMillis);可能會阻塞。

if (msg != null && msg.target == null) {
    // Stalled by a barrier.  Find the next asynchronous message in the queue.
    do {
       prevMsg = msg;
       msg = msg.next;
    } while (msg != null && !msg.isAsynchronous());
}

這裏從註釋上,我們可以看到,當前隊列如果被Barrier卡住,也就是隊列中插了一個同步分隔欄,那麼就去找隊列中的下一個異步消息。方法最後有個IdleHandler的循環,當消息隊列中沒有消息需要馬上處理時,會判斷用戶是否設置了Idle Handler,如果有的話,則會嘗試處理mIdleHandlers中所記錄的所有Idle Handler,此時會逐個調用這些Idle Handler的queueIdle()方法。

Looper

【frameworks/base/core/java/android/os/Looper.java】

public final class Looper {
    private static final String TAG = "Looper";

    // sThreadLocal.get() will return null unless you've called prepare().
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
    private static Looper sMainLooper;  // guarded by Looper.class

    final MessageQueue mQueue;
    final Thread mThread;

    private Printer mLogging;
    ...
}

可以看到,Looper中維護了一個ThreadLocal變量,用於線程隔離存儲。

 public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

這兩個方法是平時用的最多的,當我們在非UI線程中使用Handler時,一般都需要先創建一個Looper,然後才能發送消息。那麼創建的操作就是這裏的prepare方法。從代碼的實現來看,當實例化Looper時,會把當前線程對應的Looper存儲到ThreadLocal中,從而保證每個線程的Looper是唯一的,與其他線程之間隔離的。
此外還有如下的方法:

public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

    /** Returns the application's main looper, which lives in the main thread of the application.
     */
    public static Looper getMainLooper() {
        synchronized (Looper.class) {
            return sMainLooper;
        }
    }

prepareMainLooper是給主線程使用的,我們可以在ActivityThread的main方法中看到它。而getMainLooper爲在應用中獲取主線程的Looper提供了便捷。

接下來看看Looper的主要方法loop():

/**
 * Run the message queue in this thread. Be sure to call
 * {@link #quit()} to end the loop.
 */
public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        msg.target.dispatchMessage(msg);

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

方法開始處獲取Looper對象實例,並做了校驗,下面這個異常相信大家都遇到過:”No Looper; Looper.prepare() wasn’t called on this thread.”
在獲取到消息隊列的實例之後,開始了無限循環。
關鍵的是下面這兩句:

Message msg = queue.next();
msg.target.dispatchMessage(msg);

第一個就是前面說過的MessageQueue的next()方法,阻塞式獲取Message對象。
第二句,前面說過,這個target就是發送消息到MessageQueue的handler對象。把消息又轉發到Handler的的handleMessage方法中去具體處理。這樣看來,Looper其實就是一箇中轉的作用。
我們再進到MessageQueue的next()中看一下:

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);
            ...
}

剛纔看過這個方法,不過這個地方有個nativePollOnce沒有分析。nativePollOnce()起到了阻塞作用,保證消息循環不會在無消息處理時一直在那裏空跑。看看這個Native方法是怎麼實現的?
從前面的註冊器上看:
實現在jni函數:android_os_MessageQueue_nativePollOnce

static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jclass clazz,
        jlong ptr, jint timeoutMillis) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->pollOnce(env, timeoutMillis);
}

void NativeMessageQueue::pollOnce(JNIEnv* env, int timeoutMillis) {
    mInCallback = true;
    mLooper->pollOnce(timeoutMillis);
    mInCallback = false;
    if (mExceptionObj) {
        env->Throw(mExceptionObj);
        env->DeleteLocalRef(mExceptionObj);
        mExceptionObj = NULL;
    }
}

這個地方又出現了一個Looper。這個是Looper在C++層的實現,那這個有什麼不一樣的地方麼?
【system/core/include/utils/Looper.h】
【system/core/libutils/Looper.cpp】
看下構造函數:

Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    int wakeFds[2];
    // 創建管道
    int result = pipe(wakeFds);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
    // 管道的“讀取端”
    mWakeReadPipeFd = wakeFds[0];
    // 管道的“寫入端”
    mWakeWritePipeFd = wakeFds[1];
    //讀
    result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
            errno);
    //寫
    result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
            errno);

    mIdling = false;

    // 創建epoll實例,並註冊喚醒管道
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);

    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeReadPipeFd;
    // 監聽管道讀取端
    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, & eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
            errno);
}

這段代碼來看,是在Looper中創建了一個管道,然後通過epoll監聽管道的讀取端,當向消息隊列發送消息時,最終是向管道的寫入端寫入數據。前面寫入”W”只是一個通知有消息來了。

接着前面看下pollOnce函數:
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    for (;;) {
        ...
        if (result != 0) {
        ...
            if (outFd != NULL) *outFd = 0;
            if (outEvents != NULL) *outEvents = 0;
            if (outData != NULL) *outData = NULL;
            return result;
        }
        result = pollInner(timeoutMillis);
    }
}

調到了pollInner函數:

int Looper::pollInner(int timeoutMillis) {
    ...
    // Poll.
    int result = POLL_WAKE;
    mResponses.clear();
    mResponseIndex = 0;

    // We are about to idle.
    mIdling = true;

    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
    ....

    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        if (fd == mWakeReadPipeFd) {//這個是喚醒的讀管道描述符
            if (epollEvents & EPOLLIN) {
                awoken();//從管道中感知到EPOLLIN,調用awoken()
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake read pipe.", epollEvents);
            }
        } else {//其他情況的消息事件
            ssize_t requestIndex = mRequests.indexOfKey(fd);
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
                        "no longer registered.", epollEvents, fd);
            }
        }
    }
Done: ;
    //調用等待處理的消息回調
    // Invoke pending message callbacks.
    mNextMessageUptime = LLONG_MAX;
    while (mMessageEnvelopes.size() != 0) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
           ....
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();
                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = POLL_CALLBACK;
        } else {
            // The last message left at the head of the queue determines the next wakeup time.
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }
    .......
    //調用所有response記錄的回調
    for (size_t i = 0; i < mResponses.size(); i++) {
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
                    this, response.request.callback.get(), fd, events, data);
#endif
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd);
            }

            response.request.callback.clear();
            result = POLL_CALLBACK;
        }
    }
    return result;
}

從上面的代碼中,我們可以看到,當有消息事件發過來時,首先Looper.loop()會通過queue.next()從MessageQueue中取消息,此時可能會在next()方法中阻塞,也就是nativePollOnce(ptr, nextPollTimeoutMillis);方法做的事。這裏會繼續調到C++層,通過android_os_MessageQueue_nativePollOnce(xxx)將時間值傳遞給nativeMessageQueue->pollOnce(xxx);接着處理邏輯就轉移到了C++層的Looper中處理。由mLooper->pollOnce(timeoutMillis);調到pollOnce函數,然後調用pollInner(timeoutMillis),在這個函數中對請求的消息和響應做了處理:

int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);

這裏將時間值設置給epoll_wait函數,也就是獲取消息事件等待的超時時間了。
當eventCount大於0時,意味着有消息事件來了,我們比較關心的是fd == mWakeReadPipeFd的情況,我們看到這裏調用了awoken()喚醒函數;

void Looper::awoken() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ awoken", this);
#endif

    char buffer[16];
    ssize_t nRead;
    do {
        nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
    } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
}

這裏只是從管道的讀取端進行讀數據操作。

Handler

構造函數:

public Handler(Looper looper, Callback callback, boolean async) {
    mLooper = looper;
    mQueue = looper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
        final Class<? extends Handler> klass = getClass();
        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                (klass.getModifiers() & Modifier.STATIC) == 0) {
            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                klass.getCanonicalName());
        }
    }

    mLooper = Looper.myLooper();
    if (mLooper == null) {
        throw new RuntimeException(
            "Can't create handler inside thread that has not called Looper.prepare()");
    }
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

這裏又是經常看到的異常信息了。
下面這個也是一個常用的方法,實際上調用的也是Message的obtain方法。

public final Message obtainMessage()
{
    return Message.obtain(this);
}

我們通常使用的發送消息方法:

public final boolean sendMessage(Message msg)
{
    return sendMessageDelayed(msg, 0);
}

public final boolean sendEmptyMessage(int what)
{
    return sendEmptyMessageDelayed(what, 0);
}

public final boolean post(Runnable r)
{
   return  sendMessageDelayed(getPostMessage(r), 0);
}

public final boolean postAtTime(Runnable r, long uptimeMillis)
{
    return sendMessageAtTime(getPostMessage(r), uptimeMillis);
}

public final boolean postDelayed(Runnable r, long delayMillis)
{
    return sendMessageDelayed(getPostMessage(r), delayMillis);
}

最後都會調用到同一個方法:

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
   MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

其實也就做了一件事情,就是在uptimeMillis時間計時完成前把消息插入消息隊列中。
在Looper.java的loop()方法中,調用到msg.target.dispatchMessage()時,流程再次轉到handler中:

/**
  * Handle system messages here.
  */
 public void dispatchMessage(Message msg) {
     if (msg.callback != null) {
         handleCallback(msg);
     } else {
         if (mCallback != null) {
             if (mCallback.handleMessage(msg)) {
                 return;
             }
         }
         handleMessage(msg);
     }
 }

最後會走到handler的handleMessage方法對消息進行處理。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章