HashMap 的底層原理分析

1. HashMap的數據結構

數據結構中有數組和鏈表來實現對數據的存儲,但這兩者基本上是兩個極端。

數組

數組存儲區間是連續的,佔用內存嚴重,故空間複雜的很大。但數組的二分查找時間複雜度小,爲O(1);數組的特點是:尋址容易,插入和刪除困難;

鏈表

鏈表存儲區間離散,佔用內存比較寬鬆,故空間複雜度很小,但時間複雜度很大,達O(N)。鏈表的特點是:尋址困難,插入和刪除容易。

哈希表

那麼我們能不能綜合兩者的特性,做出一種尋址容易,插入刪除也容易的數據結構?答案是肯定的,這就是我們要提起的哈希表。哈希表((Hash table)既滿足了數據的查找方便,同時不佔用太多的內容空間,使用也十分方便。

  哈希表有多種不同的實現方法,我接下來解釋的是最常用的一種方法—— 拉鍊法,我們可以理解爲“鏈表的數組” ,如圖:

 

 

  從上圖我們可以發現哈希表是由數組+鏈表組成的,一個長度爲16的數組中,每個元素存儲的是一個鏈表的頭結點。那麼這些元素是按照什麼樣的規則存儲到數組中呢。一般情況是通過hash(key)%len獲得,也就是元素的key的哈希值對數組長度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存儲在數組下標爲12的位置。

  HashMap其實也是一個線性的數組實現的,所以可以理解爲其存儲數據的容器就是一個線性數組。這可能讓我們很不解,一個線性的數組怎麼實現按鍵值對來存取數據呢?這裏HashMap有做一些處理。

  首先HashMap裏面實現一個靜態內部類Entry,其重要的屬性有 key , value, next,從屬性key,value我們就能很明顯的看出來Entry就是HashMap鍵值對實現的一個基礎bean,我們上面說到HashMap的基礎就是一個線性數組,這個數組就是Entry[],Map裏面的內容都保存在Entry[]裏面。

    /**

     * The table, resized as necessary. Length MUST Always be a power of two.

     */

    transient Entry[] table;

2. HashMap的存取實現

     既然是線性數組,爲什麼能隨機存取?這裏HashMap用了一個小算法,大致是這樣實現:

// 存儲時:
int hash = key.hashCode(); // 這個hashCode方法這裏不詳述,只要理解每個key的hash是一個固定的int值
int index = hash % Entry[].length;
Entry[index] = value;

// 取值時:
int hash = key.hashCode();
int index = hash % Entry[].length;
return Entry[index];

 

1)put

 

疑問:如果兩個key通過hash%Entry[].length得到的index相同,會不會有覆蓋的危險?

  這裏HashMap裏面用到鏈式數據結構的一個概念。上面我們提到過Entry類裏面有一個next屬性,作用是指向下一個Entry。打個比方, 第一個鍵值對A進來,通過計算其key的hash得到的index=0,記做:Entry[0] = A。一會後又進來一個鍵值對B,通過計算其index也等於0,現在怎麼辦?HashMap會這樣做:B.next = A,Entry[0] = B,如果又進來C,index也等於0,那麼C.next = B,Entry[0] = C;這樣我們發現index=0的地方其實存取了A,B,C三個鍵值對,他們通過next這個屬性鏈接在一起。所以疑問不用擔心。也就是說數組中存儲的是最後插入的元素。到這裏爲止,HashMap的大致實現,我們應該已經清楚了。

 public V put(K key, V value) {

        if (key == null)

            return putForNullKey(value); //null總是放在數組的第一個鏈表中

        int hash = hash(key.hashCode());

        int i = indexFor(hash, table.length);

        //遍歷鏈表

        for (Entry<K,V> e = table[i]; e != null; e = e.next) {

            Object k;

            //如果key在鏈表中已存在,則替換爲新value

            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

 

        modCount++;

        addEntry(hash, key, value, i);

        return null;

    }

 

void addEntry(int hash, K key, V value, int bucketIndex) {

    Entry<K,V> e = table[bucketIndex];

    table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //參數e, 是Entry.next

    //如果size超過threshold,則擴充table大小。再散列

    if (size++ >= threshold)

            resize(2 * table.length);

}

  當然HashMap裏面也包含一些優化方面的實現,這裏也說一下。比如:Entry[]的長度一定後,隨着map裏面數據的越來越長,這樣同一個index的鏈就會很長,會不會影響性能?HashMap裏面設置一個因子,隨着map的size越來越大,Entry[]會以一定的規則加長長度。

2)get

 public V get(Object key) {

        if (key == null)

            return getForNullKey();

        int hash = hash(key.hashCode());

        //先定位到數組元素,再遍歷該元素處的鏈表

        for (Entry<K,V> e = table[indexFor(hash, table.length)];

             e != null;

             e = e.next) {

            Object k;

            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))

                return e.value;

        }

        return null;

}

 

3)null key的存取

null key總是存放在Entry[]數組的第一個元素。

   private V putForNullKey(V value) {

        for (Entry<K,V> e = table[0]; e != null; e = e.next) {

            if (e.key == null) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

        modCount++;

        addEntry(0, null, value, 0);

        return null;

    }

 

    private V getForNullKey() {

        for (Entry<K,V> e = table[0]; e != null; e = e.next) {

            if (e.key == null)

                return e.value;

        }

        return null;

    }

 

 

 

 

4)確定數組index:hashcode % table.length取模

HashMap存取時,都需要計算當前key應該對應Entry[]數組哪個元素,即計算數組下標;算法如下:

   /**

     * Returns index for hash code h.

     */

    static int indexFor(int h, int length) {

        return h & (length-1);

    }

 

按位取並,作用上相當於取模mod或者取餘%。

這意味着數組下標相同,並不表示hashCode相同。

 

5)table初始大小

 

  public HashMap(int initialCapacity, float loadFactor) {

        .....

 

        // Find a power of 2 >= initialCapacity

        int capacity = 1;

        while (capacity < initialCapacity)

            capacity <<= 1;

 

        this.loadFactor = loadFactor;

        threshold = (int)(capacity * loadFactor);

        table = new Entry[capacity];

        init();

    }

 

注意table初始大小並不是構造函數中的initialCapacity!!

而是 >= initialCapacity的2的n次冪!!!!

————爲什麼這麼設計呢?——

3. 解決hash衝突的辦法

  1. 開放定址法(線性探測再散列,二次探測再散列,僞隨機探測再散列)
  2. 再哈希法
  3. 鏈地址法
  4. 建立一個公共溢出區

Java中hashmap的解決辦法就是採用的鏈地址法。

 

4. 再散列rehash過程

當哈希表的容量超過默認容量時,必須調整table的大小。當容量已經達到最大可能值時,那麼該方法就將容量調整到Integer.MAX_VALUE返回,這時,需要創建一張新表,將原表的映射到新表中。

   /**

     * Rehashes the contents of this map into a new array with a

     * larger capacity.  This method is called automatically when the

     * number of keys in this map reaches its threshold.

     *

     * If current capacity is MAXIMUM_CAPACITY, this method does not

     * resize the map, but sets threshold to Integer.MAX_VALUE.

     * This has the effect of preventing future calls.

     *

     * @param newCapacity the new capacity, MUST be a power of two;

     *        must be greater than current capacity unless current

     *        capacity is MAXIMUM_CAPACITY (in which case value

     *        is irrelevant).

     */

    void resize(int newCapacity) {

        Entry[] oldTable = table;

        int oldCapacity = oldTable.length;

        if (oldCapacity == MAXIMUM_CAPACITY) {

            threshold = Integer.MAX_VALUE;

            return;

        }

 

        Entry[] newTable = new Entry[newCapacity];

        transfer(newTable);

        table = newTable;

        threshold = (int)(newCapacity * loadFactor);

    }

 

    /**

     * Transfers all entries from current table to newTable.

     */

    void transfer(Entry[] newTable) {

        Entry[] src = table;

        int newCapacity = newTable.length;

        for (int j = 0; j < src.length; j++) {

            Entry<K,V> e = src[j];

            if (e != null) {

                src[j] = null;

                do {

                    Entry<K,V> next = e.next;

                    //重新計算index

                    int i = indexFor(e.hash, newCapacity);

                    e.next = newTable[i];

                    newTable[i] = e;

                    e = next;

                } while (e != null);

            }

        }

    }

原文地址:https://www.cnblogs.com/holyshengjie/p/6500463.html

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章