輾轉相除法 原理 Java實現

「輾轉相除法」又叫做「歐幾里得算法」,是公元前 300 年左右的希臘數學家歐幾里得在他的著作《幾何原本》提出的.利用這個方法,可以較快地求出兩個自然數的最大公因數,即 HCF 或叫做 gcd.
最大公約數(greatest common divisor,簡寫爲gcd;或highest common factor,簡寫爲hcf)
所謂最大公因數,是指幾個數的共有的因數之中最大的一個,例如 8 和 12 的最大公因數是 4,記作 gcd(8,12)=4. 
在介紹這個方法之前,先說明整除性的一些特點,注以下文的所有數都是正整數,以後不再重覆. 
我們可以這樣給出整除以的定義: 
對於兩個自然數 a 和 b,若存在正整數 q,使得 a=bq,則 b 能整除 a,記作 b | a,我們叫 b 是 a 的因數,而 a 是 b 的倍數. 
那麼如果 c | a,而且 c | b,則 c 是 a 和 b 的公因數. 
由此,我們可以得出以下一些推論: 
推論一:如果 a | b,若 k 是整數,則 a | kb.因爲由 a | b 可知 ha=b,所以 (hk)a=kb,即 a | kb. 
推論二:如果 a | b 以及 a | c,則 a | (b±c).因爲由 a | b 以及 a | c,可知 ha=b,ka=c,二式相加,得 (h+k)a=b+c,即 a | (b+c).同樣把二式相減可得 a | (b-c). 
推論三:如果 a | b 以及 b | a,則 a=b.因爲由 a | b 以及 b | a,可知 ha=b,a=kb,因此 a=k(ha),hk=1,由於 h 和 k 都是正整數,故 h=k=1,因此 a=b. 
輾轉相除法是用來計算兩個數的最大公因數,在數值很大時尤其有用而且應用在電腦程式上也十分簡單.其理論如下: 
如果 q 和 r 是 m 除以 n 的商及餘數,即 m=nq+r,則 gcd(m,n)=gcd(n,r). 
證明是這樣的: 
設 a=gcd(m,n),b=gcd(n,r) 
則有 a | m 及 a | n,因此 a | (m-nq)(這是由推論一及推論二得出的),即 a | r 及 a | n,所以 a | b 
又 b | r 及 b | n,所以 b | (nq+r),即 b | m 及 b | n,所以b | a.因爲 a | b 並且 b | a,所以 a=b,即 gcd(m,n)=gcd(n,r). 
例如計算 gcd(546, 429),由於 546=1(429)+117,429=3(117)+78,117=1(78)+39,78=2(39),因此 
gcd(546, 429) 
=gcd(429, 117) 
=gcd(117, 78) 
=gcd(78, 39) 
=39 

Java實現代碼如下:

public class GcdTest {
	int gcd1(int a, int b) {// 循環實現
		int k = 0;
		do {
			k = a % b;// 得到餘數
			a = b;// 根據輾轉相除法,把被除數賦給除數
			b = k;// 餘數賦給被除數
		} while (k != 0);
		return a;// 返回被除數
	}

	int gcd2(int a, int b) {// 逆歸實現
		if (b == 0) {// 直到滿足此條件逆歸退出
			return a;
		}
		if (a < 0) {
			return gcd2(-a, b);
		}
		if (b < 0) {
			return gcd2(a, -b);
		}
		return gcd2(b, a % b);
	}

	public static void main(String[] args) {
		GcdTest gt = new GcdTest();
		System.out.println(gt.gcd1(888, 458));
		System.out.println(gt.gcd2(888, 458));
	}
}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章