簡述ReentrantLock和Synchronized區別

1、ReentrantLock 擁有Synchronized相同的併發性和內存語義,此外還多了 鎖投票,定時鎖等候和中斷鎖等候

     線程A和B都要獲取對象O的鎖定,假設A獲取了對象O鎖,B將等待A釋放對O的鎖定,

     如果使用 synchronized ,如果A不釋放,B將一直等下去,不能被中斷

     如果 使用ReentrantLock,如果A不釋放,可以使B在等待了足夠長的時間以後,中斷等待,而幹別的事情


 ReentrantLock獲取鎖定與三種方式:
    a)  lock(), 如果獲取了鎖立即返回,如果別的線程持有鎖,當前線程則一直處於休眠狀態,直到獲取鎖

    b) tryLock(), 如果獲取了鎖立即返回true,如果別的線程正持有鎖,立即返回false;

    c)tryLock(long timeout,TimeUnit unit),   如果獲取了鎖定立即返回true,如果別的線程正持有鎖,會等待參數給定的時間,在等待的過程中,如果獲取了鎖定,就返回true,如果等待超時,返回false;

    d) lockInterruptibly:如果獲取了鎖定立即返回,如果沒有獲取鎖定,當前線程處於休眠狀態,直到或者鎖定,或者當前線程被別的線程中斷


2、synchronized是在JVM層面上實現的,不但可以通過一些監控工具監控synchronized的鎖定,而且在代碼執行時出現異常,JVM會自動釋放鎖定,但是使用Lock則不行,lock是通過代碼實現的,要保證鎖定一定會被釋放,就必須將unLock()放到finally{}中

 

3、在資源競爭不是很激烈的情況下,Synchronized的性能要優於ReetrantLock,但是在資源競爭很激烈的情況下,Synchronized的性能會下降幾十倍,但是ReetrantLock的性能能維持常態;



5.0的多線程任務包對於同步的性能方面有了很大的改進,在原有synchronized關鍵字的基礎上,又增加了ReentrantLock,以及各種Atomic類。


synchronized: 
在資源競爭不是很激烈的情況下,偶爾會有同步的情形下,synchronized是很合適的。原因在於,編譯程序通常會盡可能的進行優化synchronize,另外可讀性非常好,不管用沒用過5.0多線程包的程序員都能理解。 

ReentrantLock: 
ReentrantLock提供了多樣化的同步,比如有時間限制的同步,可以被Interrupt的同步(synchronized的同步是不能Interrupt的)等。在資源競爭不激烈的情形下,性能稍微比synchronized差點點。但是當同步非常激烈的時候,synchronized的性能一下子能下降好幾十倍。而ReentrantLock確還能維持常態。 

Atomic: 
和上面的類似,不激烈情況下,性能比synchronized略遜,而激烈的時候,也能維持常態。激烈的時候,Atomic的性能會優於ReentrantLock一倍左右。但是其有一個缺點,就是隻能同步一個值,一段代碼中只能出現一個Atomic的變量,多於一個同步無效。因爲他不能在多個Atomic之間同步。 


所以,我們寫同步的時候,優先考慮synchronized,如果有特殊需要,再進一步優化。ReentrantLock和Atomic如果用的不好,不僅不能提高性能,還可能帶來災難。


package test.thread;   
  
import static java.lang.System.out;   
  
import java.util.Random;   
import java.util.concurrent.BrokenBarrierException;   
import java.util.concurrent.CyclicBarrier;   
import java.util.concurrent.ExecutorService;   
import java.util.concurrent.Executors;   
import java.util.concurrent.atomic.AtomicInteger;   
import java.util.concurrent.atomic.AtomicLong;   
import java.util.concurrent.locks.ReentrantLock;   
  
public class TestSyncMethods {   
       
    public static void test(int round,int threadNum,CyclicBarrier cyclicBarrier){   
        new SyncTest("Sync",round,threadNum,cyclicBarrier).testTime();   
        new LockTest("Lock",round,threadNum,cyclicBarrier).testTime();   
        new AtomicTest("Atom",round,threadNum,cyclicBarrier).testTime();   
    }   
  
    public static void main(String args[]){   
           
        for(int i=0;i<5;i++){   
            int round=100000*(i+1);   
            int threadNum=5*(i+1);   
            CyclicBarrier cb=new CyclicBarrier(threadNum*2+1);   
            out.println("==========================");   
            out.println("round:"+round+" thread:"+threadNum);   
            test(round,threadNum,cb);   
               
        }   
    }   
}   
  
class SyncTest extends TestTemplate{   
    public SyncTest(String _id,int _round,int _threadNum,CyclicBarrier _cb){   
        super( _id, _round, _threadNum, _cb);   
    }   
    @Override  
    /**  
     * synchronized關鍵字不在方法簽名裏面,所以不涉及重載問題  
     */  
    synchronized long  getValue() {   
        return super.countValue;   
    }   
    @Override  
    synchronized void  sumValue() {   
        super.countValue+=preInit[index++%round];   
    }   
}   
  
  
class LockTest extends TestTemplate{   
    ReentrantLock lock=new ReentrantLock();   
    public LockTest(String _id,int _round,int _threadNum,CyclicBarrier _cb){   
        super( _id, _round, _threadNum, _cb);   
    }   
    /**  
     * synchronized關鍵字不在方法簽名裏面,所以不涉及重載問題  
     */  
    @Override  
    long getValue() {   
        try{   
            lock.lock();   
            return super.countValue;   
        }finally{   
            lock.unlock();   
        }   
    }   
    @Override  
    void sumValue() {   
        try{   
            lock.lock();   
            super.countValue+=preInit[index++%round];   
        }finally{   
            lock.unlock();   
        }   
    }   
}   
  
  
class AtomicTest extends TestTemplate{   
    public AtomicTest(String _id,int _round,int _threadNum,CyclicBarrier _cb){   
        super( _id, _round, _threadNum, _cb);   
    }   
    @Override  
    /**  
     * synchronized關鍵字不在方法簽名裏面,所以不涉及重載問題  
     */  
    long  getValue() {   
        return super.countValueAtmoic.get();   
    }   
    @Override  
    void  sumValue() {   
        super.countValueAtmoic.addAndGet(super.preInit[indexAtomic.get()%round]);   
    }   
}   
abstract class TestTemplate{   
    private String id;   
    protected int round;   
    private int threadNum;   
    protected long countValue;   
    protected AtomicLong countValueAtmoic=new AtomicLong(0);   
    protected int[] preInit;   
    protected int index;   
    protected AtomicInteger indexAtomic=new AtomicInteger(0);   
    Random r=new Random(47);   
    //任務柵欄,同批任務,先到達wait的任務掛起,一直等到全部任務到達制定的wait地點後,才能全部喚醒,繼續執行   
    private CyclicBarrier cb;   
    public TestTemplate(String _id,int _round,int _threadNum,CyclicBarrier _cb){   
        this.id=_id;   
        this.round=_round;   
        this.threadNum=_threadNum;   
        cb=_cb;   
        preInit=new int[round];   
        for(int i=0;i<preInit.length;i++){   
            preInit[i]=r.nextInt(100);   
        }   
    }   
       
    abstract void sumValue();   
    /*  
     * 對long的操作是非原子的,原子操作只針對32位  
     * long是64位,底層操作的時候分2個32位讀寫,因此不是線程安全  
     */  
    abstract long getValue();   
  
    public void testTime(){   
        ExecutorService se=Executors.newCachedThreadPool();   
        long start=System.nanoTime();   
        //同時開啓2*ThreadNum個數的讀寫線程   
        for(int i=0;i<threadNum;i++){   
            se.execute(new Runnable(){   
                public void run() {   
                    for(int i=0;i<round;i++){   
                        sumValue();   
                    }   
  
                    //每個線程執行完同步方法後就等待   
                    try {   
                        cb.await();   
                    } catch (InterruptedException e) {   
                        // TODO Auto-generated catch block   
                        e.printStackTrace();   
                    } catch (BrokenBarrierException e) {   
                        // TODO Auto-generated catch block   
                        e.printStackTrace();   
                    }   
  
  
                }   
            });   
            se.execute(new Runnable(){   
                public void run() {   
  
                    getValue();   
                    try {   
                        //每個線程執行完同步方法後就等待   
                        cb.await();   
                    } catch (InterruptedException e) {   
                        // TODO Auto-generated catch block   
                        e.printStackTrace();   
                    } catch (BrokenBarrierException e) {   
                        // TODO Auto-generated catch block   
                        e.printStackTrace();   
                    }   
  
                }   
            });   
        }   
           
        try {   
            //當前統計線程也wait,所以CyclicBarrier的初始值是threadNum*2+1   
            cb.await();   
        } catch (InterruptedException e) {   
            // TODO Auto-generated catch block   
            e.printStackTrace();   
        } catch (BrokenBarrierException e) {   
            // TODO Auto-generated catch block   
            e.printStackTrace();   
        }   
        //所有線程執行完成之後,纔會跑到這一步   
        long duration=System.nanoTime()-start;   
        out.println(id+" = "+duration);   
           
    }   
  
}  


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章