jdk1.8源码学习之HashMap

部分内容待完善... 


分析ConcurrentHashMap之前,首先要对Map和HashMap逐个分析,才能更好得理解ConcurrentHashMap。所以这片文章主要来分析HashMap。

1、Map简介

如图Map是一个接口,除此之外常用的集合类接口还有Collection

2、HashMap分析

2.1 源码分析

jdk1.7与1.8关于hashmap做了些许改动,主要就是hash冲突时对数据的处理由1.7中的拉链法变为了1.8中的红黑树(冲突数据大于8)。因为1.8中的源码过于复杂,所以这里只分析几个关键的方法和参数。

 

初始化容量

/** * The default initial capacity - MUST be a power of two. */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

首先来查看HashMap关于初始化容量的定义,这里容量定义为1<<4,也就是0001(二进制)左移4位变为1000(二进制),也就是16。具体为何这样定义可以参考代码注释,主要是为了提醒初始化容量需定义为2的幂。

负载因子定义

/** * The load factor used when none specified in constructor. */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

这里负载因子定义为0.75,即当前hashmap中实际大小大于16*0.75=12时,就要进行扩容

红黑树转化阈值

/** * The bin count threshold for using a tree rather than list for a * bin.  Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2 and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage. */
static final int TREEIFY_THRESHOLD = 8;

上面注释的大概意思是,拉链法中的节点大于8时,将会转换为红黑树。这样就将时间复杂度O(n)变为了O(lgn)


构造函数

public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
}

 源码中有好几个重载的构造函数,但主要的还是这个方法。即传入初始化大小和负载因子的方法。这个threshold的主要作用就是用来计算负载的。比如初始化长度为12,那么要在什么情况下扩容呢?就是要找出最接近的2的幂,然后计算。比如找出16,在乘以负载因子0.75

大家可能会注意,最后一行有个tableSizeFor方法,传入了一个初始化长度,下面就详细说下这个方法。这个方法设计非常巧妙,主要就是返回大于当前长度最接近的2的n次幂,比如cap=12,则返回16,主要就是运用了位操作。

static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

我举个长度为12的例子

cap的二进制    0000 1100  //十进制为12

n=cap-1即11    0000  1011 //十进制为11  

n |= n >>> 1,这个操作是n与n右移一位然后进行或操作

0000 1011
0000 0101 
或操作后
0000 1111 此时的n
同理 n |= n >>> 2,这个操作是n与n右移两位然后进行或操作
0000 1111
0000 0011
或操作后
0000 1111
....
最后发现n就是 0000 1111 即十进制的15

 经过上边一串位操作后,会发现n结果等于15,然后返回n+1即16。可以发现,上边的一串位操作其实就是把当前位即后边的位都变为1,这样结果就为2的n次幂减1了。

数据插入

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0) //如果table为0或空,则进行resize
            n = (tab = resize()).length;
        //这个是计算下标,取模操作,如果为空,则直接插入
        if ((p = tab[i = (n - 1) & hash]) == null) 
            tab[i] = newNode(hash, key, value, null);
        //else的情况有两种
        //1、key值一样,则替换value
        //2、key不一样,则拉链法,长度过长后转换为红黑树
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;//此时e已经被赋值为冲突的节点
            else if (p instanceof TreeNode)//插入红黑树中
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {//尾插法插入,如果长度大于阈值,中间会转换为红黑树
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
}

这里基本上都做了注释,具体可以看注释。

Node节点定义

/** 
* Basic hash bin node, used for most entries.  (See below for 
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.) 
*/
static class Node<K,V> implements Map.Entry<K,V> {    
    final int hash;    
    final K key;    
    V value;    
    Node<K,V> next;    
    Node(int hash, K key, V value, Node<K,V> next) {        
        this.hash = hash;        
        this.key = key;        
        this.value = value;        
        this.next = next;    
    }    
    public final K getKey()        { return key; }   
    public final V getValue()      { return value; }    
    public final String toString() { return key + "=" + value; }    
    public final int hashCode() {        return Objects.hashCode(key) ^ Objects.hashCode(value);    }   
    public final V setValue(V newValue) {        
        V oldValue = value;        
        value = newValue;        
        return oldValue;    
    }    
    public final boolean equals(Object o) {        
        if (o == this)            
            return true;        
        if (o instanceof Map.Entry) {            
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;            
            if (Objects.equals(key, e.getKey()) &&                
                Objects.equals(value, e.getValue()))                
                return true;        
        }       
        return false;    
    }
}

这是HashMap中节点的定义,它其实是单项链表。

扩容算法实现

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;//当前table容量
        int oldThr = threshold; //threshold为当前hashmap负载情况,具体在tableSizeFor函数实现,默认为16*0.75
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //把oldCap(旧表长度左移两位,即扩大两倍)oldCap*2
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // 同样阈值也要乘2
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            //把oldTab中的节点重新rehash到新的tab中去
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)//单节点的情况直接进行与操作定位
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)//对红黑树进行rehash
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // 对链表进行rehash
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

该段代码主要是用来初始化hashmap或是对hashmap扩容,具体请看代码注释

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章