Java併發—java.util.concurrent.locks包

Java併發—java.util.concurrent.locks包

一.synchronized的缺陷

synchronized是java中的一個關鍵字,也就是說是Java語言內置的特性。那麼爲什麼會出現Lock呢?

如果一個代碼塊被synchronized修飾了,當一個線程獲取了對應的鎖,並執行該代碼塊時,其他線程便只能一直等待,等待獲取鎖的線程釋放鎖,而這裏獲取鎖的線程釋放鎖只會有兩種情況:

1)獲取鎖的線程執行完了該代碼塊,然後線程釋放對鎖的佔有;

2)線程執行發生異常,此時JVM會讓線程自動釋放鎖。

那麼如果這個獲取鎖的線程由於要等待IO或者其他原因(比如調用sleep方法)被阻塞了,但是又沒有釋放鎖,其他線程便只能乾巴巴地等待,試想一下,這多麼影響程序執行效率。

因此就需要有一種機制可以不讓等待的線程一直無期限地等待下去(比如只等待一定的時間或者能夠響應中斷),通過Lock就可以辦到。

再舉個例子:當有多個線程讀寫文件時,讀操作和寫操作會發生衝突現象,寫操作和寫操作會發生衝突現象,但是讀操作和讀操作不會發生衝突現象。

但是採用synchronized關鍵字來實現同步的話,就會導致一個問題:

如果多個線程都只是進行讀操作,所以當一個線程在進行讀操作時,其他線程只能等待無法進行讀操作。

因此就需要一種機制來使得多個線程都只是進行讀操作時,線程之間不會發生衝突,通過Lock就可以辦到。

另外,通過Lock可以知道線程有沒有成功獲取到鎖。這個是synchronized無法辦到的。

總結一下,也就是說Lock提供了比synchronized更多的功能。但是要注意以下幾點:

1)Lock不是Java語言內置的,synchronized是Java語言的關鍵字,因此是內置特性。Lock是一個類,通過這個類可以實現同步訪問;

2)Lock和synchronized有一點非常大的不同,採用synchronized不需要用戶去手動釋放鎖,當synchronized方法或者synchronized代碼塊執行完之後,系統會自動讓線程釋放對鎖的佔用;而Lock則必須要用戶去手動釋放鎖,如果沒有主動釋放鎖,就有可能導致出現死鎖現象。

二.java.util.concurrent.locks包下常用的類

下面我們就來探討一下java.util.concurrent.locks包中常用的類和接口。

1.Lock

首先要說明的就是Lock,通過查看Lock的源碼可知,Lock是一個接口:

public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    void unlock();
    Condition newCondition();
}

下面來逐個講述Lock接口中每個方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用來獲取鎖的。unLock()方法是用來釋放鎖的。newCondition()這個方法放在最後講。

在Lock中聲明瞭四個方法來獲取鎖,那麼這四個方法有何區別呢?

  • lock : 在鎖上等待,直到獲取鎖;
  • tryLock:立即返回,獲得鎖返回true,沒獲得鎖返回false;
  • lockInterruptibly:在鎖上等待,直到獲取鎖,但是會響應中斷,這個方法優先考慮響應中斷,而不是響應鎖的普通獲取或重入獲取。

首先lock()方法是平常使用得最多的一個方法,就是用來獲取鎖。如果鎖已被其他線程獲取,則進行等待。

由於在前面講到如果採用Lock,必須主動去釋放鎖,並且在發生異常時,不會自動釋放鎖。因此一般來說,使用Lock必須在try{}catch{}塊中進行,並且將釋放鎖的操作放在finally塊中進行,以保證鎖一定被被釋放,防止死鎖的發生。通常使用Lock來進行同步的話,是以下面這種形式去使用的:

Lock lock = ...;
lock.lock();
try{
    //處理任務
}catch(Exception ex){
     
}finally{
    lock.unlock();   //釋放鎖
}

tryLock()方法是有返回值的,它表示用來嘗試獲取鎖,如果獲取成功,則返回true,如果獲取失敗(即鎖已被其他線程獲取),則返回false,也就說這個方法無論如何都會立即返回。在拿不到鎖時不會一直在那等待。

tryLock(long time, TimeUnit unit)方法和tryLock()方法是類似的,只不過區別在於這個方法在拿不到鎖時會等待一定的時間,在時間期限之內如果還拿不到鎖,就返回false。如果如果一開始拿到鎖或者在等待期間內拿到了鎖,則返回true。

所以,一般情況下通過tryLock來獲取鎖時是這樣使用的:

Lock lock = ...;
if(lock.tryLock()) {
     try{
         //處理任務
     }catch(Exception ex){
         
     }finally{
         lock.unlock();   //釋放鎖
     } 
}else {
    //如果不能獲取鎖,則直接做其他事情
}

lockInterruptibly()方法比較特殊,當通過這個方法去獲取鎖時,如果線程正在等待獲取鎖,則這個線程能夠響應中斷,即中斷線程的等待狀態。也就使說,當兩個線程同時通過lock.lockInterruptibly()想獲取某個鎖時,假若此時線程A獲取到了鎖,而線程B只有在等待,那麼對線程B調用threadB.interrupt()方法能夠中斷線程B的等待過程。

由於lockInterruptibly()的聲明中拋出了異常,所以lock.lockInterruptibly()必須放在try塊中或者在調用lockInterruptibly()的方法外聲明拋出InterruptedException。

因此lockInterruptibly()一般的使用形式如下:

public void method() throws InterruptedException {
    lock.lockInterruptibly();
    try {  
     //.....
    }
    finally {
        lock.unlock();
    }  
}

注意,當一個線程獲取了鎖之後,是不會被interrupt()方法中斷的。因爲本身在前面的文章中講過單獨調用interrupt()方法不能中斷正在運行過程中的線程,只能中斷阻塞過程中的線程。

因此當通過lockInterruptibly()方法獲取某個鎖時,如果不能獲取到,只有進行等待的情況下,是可以響應中斷的。

而用synchronized修飾的話,當一個線程處於等待某個鎖的狀態,是無法被中斷的,只有一直等待下去。

2.ReentrantLock

ReentrantLock,意思是“可重入鎖”,關於可重入鎖的概念在下一節講述。ReentrantLock是唯一實現了Lock接口的類,並且ReentrantLock提供了更多的方法。下面通過一些實例看具體看一下如何使用ReentrantLock。

例子1,lock()的正確使用方法

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();    //注意這個地方
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了鎖");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+"釋放了鎖");
            lock.unlock();
        }
    }
}

輸出結果

Thread-0得到了鎖
Thread-1得到了鎖
Thread-0釋放了鎖
Thread-1釋放了鎖

也許有朋友會問,怎麼會輸出這個結果?第二個線程怎麼會在第一個線程釋放鎖之前得到了鎖?原因在於,在insert方法中的lock變量是局部變量,每個線程執行該方法時都會new一個新的ReentrantLock,那麼理所當然每個線程執行到lock.lock()處獲取的是不同的鎖,所以就不會發生衝突。

知道了原因改起來就比較容易了,只需要將lock聲明爲類的屬性即可。

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意這個地方
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了鎖");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+"釋放了鎖");
            lock.unlock();
        }
    }
}

這樣就是正確地使用Lock的方法了。

例子2,tryLock()的使用方法

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意這個地方
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        if(lock.tryLock()) {
            try {
                System.out.println(thread.getName()+"得到了鎖");
                for(int i=0;i<5;i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {
                // TODO: handle exception
            }finally {
                System.out.println(thread.getName()+"釋放了鎖");
                lock.unlock();
            }
        } else {
            System.out.println(thread.getName()+"獲取鎖失敗");
        }
    }
}

輸出結果

Thread-0得到了鎖
Thread-1獲取鎖失敗
Thread-0釋放了鎖

例子3,lockInterruptibly()響應中斷的使用方法:

public class Test {
    private Lock lock = new ReentrantLock();
    public static void main(String[] args)  {
        Test test = new Test();
        MyThread thread1 = new MyThread(test);
        MyThread thread2 = new MyThread(test);
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }

    public void insert(Thread thread) throws InterruptedException{
        lock.lockInterruptibly();   //注意,如果需要正確中斷等待鎖的線程,必須將獲取鎖放在外面,然後將InterruptedException拋出
        try {
            System.out.println(thread.getName()+"得到了鎖");
            Thread.sleep(5000);
        }
        finally {
            System.out.println(Thread.currentThread().getName()+"執行finally");
            lock.unlock();
            System.out.println(thread.getName()+"釋放了鎖");
        }
    }
}

class MyThread extends Thread {
    private Test test = null;
    public MyThread(Test test) {
        this.test = test;
    }
    @Override
    public void run() {

        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println(Thread.currentThread().getName()+"被中斷");
        }
    }
}

運行之後,發現thread2能夠被正確中斷。結果

Thread-0得到了鎖
Thread-1被中斷
Thread-0執行finally
Thread-0釋放了鎖

同樣的代碼如果使用lock.lock(),結果如下:

Thread-0得到了鎖
Thread-0執行finally
Thread-0釋放了鎖
Thread-1得到了鎖
Thread-1執行finally
Thread-1釋放了鎖
Thread-1被中斷  //// ??????這句話怎麼執行的

因爲lock.lock()不會相應中斷。

3.ReadWriteLock

ReadWriteLock也是一個接口,在它裏面只定義了兩個方法:

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading.
     */
    Lock readLock();
 
    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing.
     */
    Lock writeLock();
}

一個用來獲取讀鎖,一個用來獲取寫鎖。也就是說將文件的讀寫操作分開,分成2個鎖來分配給線程,從而使得多個線程可以同時進行讀操作。下面的ReentrantReadWriteLock實現了ReadWriteLock接口。

4.ReentrantReadWriteLock

ReentrantReadWriteLock裏面提供了很多豐富的方法,不過最主要的有兩個方法:readLock()和writeLock()用來獲取讀鎖和寫鎖。

下面通過幾個例子來看一下ReentrantReadWriteLock具體用法。

假如有多個線程要同時進行讀操作的話,先看一下synchronized達到的效果:

public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
     
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
    }  
     
    public synchronized void get(Thread thread) {
        long start = System.currentTimeMillis();
        while(System.currentTimeMillis() - start <= 1) {
            System.out.println(thread.getName()+"正在進行讀操作");
        }
        System.out.println(thread.getName()+"讀操作完畢");
    }
}

這段程序的輸出結果會是,直到thread1執行完讀操作之後,纔會打印thread2執行讀操作的信息。

Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0讀操作完畢
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1讀操作完畢

而改成用讀寫鎖的話

public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
     
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
    }  
     
    public void get(Thread thread) {
        rwl.readLock().lock();
        try {
            long start = System.currentTimeMillis();
             
            while(System.currentTimeMillis() - start <= 1) {
                System.out.println(thread.getName()+"正在進行讀操作");
            }
            System.out.println(thread.getName()+"讀操作完畢");
        } finally {
            rwl.readLock().unlock();
        }
    }
}

此時打印的結果爲:

Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0正在進行讀操作
Thread-1正在進行讀操作
Thread-0讀操作完畢
Thread-1讀操作完畢

說明thread1和thread2在同時進行讀操作。

這樣就大大提升了讀操作的效率。

不過要注意的是,如果有一個線程已經佔用了讀鎖,則此時其他線程如果要申請寫鎖,則申請寫鎖的線程會一直等待釋放讀鎖。

如果有一個線程已經佔用了寫鎖,則此時其他線程如果申請寫鎖或者讀鎖,則申請的線程會一直等待釋放寫鎖。

5.Lock和synchronized的選擇

總結來說,Lock和synchronized有以下幾點不同:

1)Lock是一個接口,而synchronized是Java中的關鍵字,synchronized是內置的語言實現;

2)synchronized在發生異常時,會自動釋放線程佔有的鎖,因此不會導致死鎖現象發生;而Lock在發生異常時,如果沒有主動通過unLock()去釋放鎖,則很可能造成死鎖現象,因此使用Lock時需要在finally塊中釋放鎖;

3)Lock可以讓等待鎖的線程響應中斷,而synchronized卻不行,使用synchronized時,等待的線程會一直等待下去,不能夠響應中斷;

4)通過Lock可以知道有沒有成功獲取鎖,而synchronized卻無法辦到。

5)Lock可以提高多個線程進行讀操作的效率。

在性能上來說,如果競爭資源不激烈,兩者的性能是差不多的,而當競爭資源非常激烈時(即有大量線程同時競爭),此時Lock的性能要遠遠優於synchronized。所以說,在具體使用時要根據適當情況選擇。

三.鎖的相關概念介紹

在前面介紹了Lock的基本使用,這一節來介紹一下與鎖相關的幾個概念。

1.可重入鎖

如果鎖具備可重入性,則稱作爲可重入鎖。像synchronized和ReentrantLock都是可重入鎖,可重入性在我看來實際上表明瞭鎖的分配機制:基於線程的分配,而不是基於方法調用的分配。舉個簡單的例子,當一個線程執行到某個synchronized方法時,比如說method1,而在method1中會調用另外一個synchronized方法method2,此時線程不必重新去申請鎖,而是可以直接執行方法method2。

看下面這段代碼就明白了:

class MyClass {
    public synchronized void method1() {
        method2();
    }
     
    public synchronized void method2() {
         
    }
}

上述代碼中的兩個方法method1和method2都用synchronized修飾了,假如某一時刻,線程A執行到了method1,此時線程A獲取了這個對象的鎖,而由於method2也是synchronized方法,假如synchronized不具備可重入性,此時線程A需要重新申請鎖。但是這就會造成一個問題,因爲線程A已經持有了該對象的鎖,而又在申請獲取該對象的鎖,這樣就會線程A一直等待永遠不會獲取到的鎖。

而由於synchronized和Lock都具備可重入性,所以不會發生上述現象。

2.可中斷鎖

可中斷鎖:顧名思義,就是可以相應中斷的鎖。

在Java中,synchronized就不是可中斷鎖,而Lock是可中斷鎖。

如果某一線程A正在執行鎖中的代碼,另一線程B正在等待獲取該鎖,可能由於等待時間過長,線程B不想等待了,想先處理其他事情,我們可以讓它中斷自己或者在別的線程中中斷它,這種就是可中斷鎖。

在前面演示lockInterruptibly()的用法時已經體現了Lock的可中斷性。

3.3.公平鎖

公平鎖即儘量以請求鎖的順序來獲取鎖。比如同是有多個線程在等待一個鎖,當這個鎖被釋放時,等待時間最久的線程(最先請求的線程)會獲得該所,這種就是公平鎖。

非公平鎖即無法保證鎖的獲取是按照請求鎖的順序進行的。這樣就可能導致某個或者一些線程永遠獲取不到鎖。

在Java中,synchronized就是非公平鎖,它無法保證等待的線程獲取鎖的順序。

而對於ReentrantLock和ReentrantReadWriteLock,它默認情況下是非公平鎖,但是可以設置爲公平鎖。
  
見源碼:

    /**
     * Sync object for non-fair locks
     */
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        /**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.
         */
        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }

    /**
     * Sync object for fair locks
     */
    static final class FairSync extends Sync {
        private static final long serialVersionUID = -3000897897090466540L;

        final void lock() {
            acquire(1);
        }

        /**
         * Fair version of tryAcquire.  Don't grant access unless
         * recursive call or no waiters or is first.
         */
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }    

在ReentrantLock中定義了2個靜態內部類,一個是NotFairSync,一個是FairSync,分別用來實現非公平鎖和公平鎖。

我們可以在創建ReentrantLock對象時,通過以下方式來設置鎖的公平性:

ReentrantLock lock = new ReentrantLock(true);

如果參數爲true表示爲公平鎖,爲fasle爲非公平鎖。默認情況下,如果使用無參構造器,則是非公平鎖。
見源碼:

 /**
     * Creates an instance of {@code ReentrantLock}.
     * This is equivalent to using {@code ReentrantLock(false)}.
     */
    public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

另外在ReentrantLock類中定義了很多方法,比如:

isFair() //判斷鎖是否是公平鎖

isLocked() //判斷鎖是否被任何線程獲取了

isHeldByCurrentThread() //判斷鎖是否被當前線程獲取了

hasQueuedThreads() //判斷是否有線程在等待該鎖

在ReentrantReadWriteLock中也有類似的方法,同樣也可以設置爲公平鎖和非公平鎖。不過要記住,ReentrantReadWriteLock並未實現Lock接口,它實現的是ReadWriteLock接口。

四.Condition 類

在前面我們學習與synchronized鎖配合的線程等待(Object.wait)與線程通知(Object.notify),那麼對於JDK1.5 的 java.util.concurrent.locks.ReentrantLock 鎖,JDK也爲我們提供了與此功能相應的類java.util.concurrent.locks.Condition。Condition與重入鎖是通過lock.newCondition()方法產生一個與當前重入鎖綁定的Condtion實例,我們通知該實例來控制線程的等待與通知。該接口的所有方法:

public interface Condition {
     //使當前線程加入 await() 等待隊列中,並釋放當鎖,當其他線程調用signal()會重新請求鎖。與Object.wait()類似。
    void await() throws InterruptedException;

    //調用該方法的前提是,當前線程已經成功獲得與該條件對象綁定的重入鎖,否則調用該方法時會拋出IllegalMonitorStateException。
    //調用該方法後,結束等待的唯一方法是其它線程調用該條件對象的signal()或signalALL()方法。等待過程中如果當前線程被中斷,該方法仍然會繼續等待,同時保留該線程的中斷狀態。 
    void awaitUninterruptibly();

    // 調用該方法的前提是,當前線程已經成功獲得與該條件對象綁定的重入鎖,否則調用該方法時會拋出IllegalMonitorStateException。
    //nanosTimeout指定該方法等待信號的的最大時間(單位爲納秒)。若指定時間內收到signal()或signalALL()則返回nanosTimeout減去已經等待的時間;
    //若指定時間內有其它線程中斷該線程,則拋出InterruptedException並清除當前線程的打斷狀態;若指定時間內未收到通知,則返回0或負數。 
    long awaitNanos(long nanosTimeout) throws InterruptedException;

    //與await()基本一致,唯一不同點在於,指定時間之內沒有收到signal()或signalALL()信號或者線程中斷時該方法會返回false;其它情況返回true。
    boolean await(long time, TimeUnit unit) throws InterruptedException;

   //適用條件與行爲與awaitNanos(long nanosTimeout)完全一樣,唯一不同點在於它不是等待指定時間,而是等待由參數指定的某一時刻。
    boolean awaitUntil(Date deadline) throws InterruptedException;
    
    //喚醒一個在 await()等待隊列中的線程。與Object.notify()相似
    void signal();

   //喚醒 await()等待隊列中所有的線程。與object.notifyAll()相似
    void signalAll();
}

await() 等待 與 singnal()通知例子:

package com.jalja.org.base.Thread;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

/**
 * Condition 配合Lock  實現線程的等待 與通知
 */
public class ConditionTest{
    public static ReentrantLock lock=new ReentrantLock();
    public static Condition condition =lock.newCondition();
    public static void main(String[] args) {
        new Thread(){
            @Override
            public void run() {
                lock.lock();//請求鎖
                try{
                    System.out.println(Thread.currentThread().getName()+"==》進入等待");
                    condition.await();//設置當前線程進入等待
                }catch (InterruptedException e) {
                    e.printStackTrace();
                }finally{
                    lock.unlock();//釋放鎖
                }
                System.out.println(Thread.currentThread().getName()+"==》繼續執行");
            }    
        }.start();
        new Thread(){
            @Override
            public void run() {
                lock.lock();//請求鎖
                try{
                    System.out.println(Thread.currentThread().getName()+"=》進入");
                    Thread.sleep(2000);//休息2秒
                    condition.signal();//隨機喚醒等待隊列中的一個線程
                    System.out.println(Thread.currentThread().getName()+"休息結束");
                }catch (InterruptedException e) {
                    e.printStackTrace();
                }finally{
                    lock.unlock();//釋放鎖
                }
            }    
        }.start();
    }
}

執行結果:

Thread-0==》進入等待
Thread-1=》進入
Thread-1休息結束
Thread-0==》繼續執行

流程:在調用await()方法前線程必須獲得重入鎖(第17行代碼),調用await()方法後線程會釋放當前佔用的鎖。同理在調用signal()方法時當前線程也必須獲得相應重入鎖(代碼32行),調用signal()方法後系統會從condition.await()等待隊列中喚醒一個線程。當線程被喚醒後,它就會嘗試重新獲得與之綁定的重入鎖,一旦獲取成功將繼續執行。所以調用signal()方法後一定要釋放當前佔用的鎖(代碼41行),這樣被喚醒的線程纔能有獲得鎖的機會,才能繼續執行。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章