[讀書筆記]C++基礎知識溫習:堆棧

概念

====

棧區(heap):

由編譯器自動分配釋放 ,存放函數的參數值,局部變量的值等。其操作方式類似於數據結構中的棧。


堆區(stack):

一般由程序員分配釋放, 若程序員不釋放,程序結束時可能由OS回收 。注意它與數據結構中的堆是兩回事,分配方式倒是類似於鏈表。


全局區(靜態區)(static):

全局變量和靜態變量的存儲是放在一塊的,初始化的全局變量和靜態變量在一塊區域, 未初始化的全局變量和未初始化的靜態變量在相鄰的另一塊區域。 程序結束後有系統釋放 


文字常量:

常量字符串就是放在這裏的。 程序結束後由系統釋放


程序代碼區:

存放函數體的二進制代碼。


例子程序

======
這是一個前輩寫的,非常詳細 
//main.cpp 


int a = 0; //全局初始化區 
char *p1;  //全局未初始化區 
main() 
{ 
int b; //棧 
char s[] = "abc"; //棧 
char *p2; //棧 
char *p3 = "123456"; //123456\0在常量區,p3在棧上。 
static int c =0; //全局(靜態)初始化區 
p1 = (char *)malloc(10); 
p2 = (char *)malloc(20); 
//分配得來得10和20字節的區域就在堆區。 
strcpy(p1, "123456"); //123456\0放在常量區,編譯器可能會將它與p3所指向的"123456"優化成一個地方。 
} 

自己的一個小例子:


	//棧
	char *p3 = "test1";
	char *p4 = "test2";
	int i5;
	float f6 = 0.0;
	printf("Heap:\np3= %p, p4=%p, i5=%p, f6=%p\n",&p3,&p4,&i5,&f6);

	//p1,p2分步在棧上
	char *p1; 
	char *p2;
	printf("Heap:\np1=%p, p2=%p\n",&p1,&p2);
	//p1,p2所指向的數據分步在堆上
	p1 = (char *)malloc(10);
	p2 = (char *)malloc(20);
	printf("Stack:\np1= %p, p2=%p\n",p1,p2);
	

運行結果:



參考內容:

首先,我們舉一個例子:
      void f() { int* p=new int[5]; } 
      這條短短的一句話就包含了堆與棧,看到new,我們首先就應該想到,我們分配了一塊堆內存,那麼指針p呢?他分配的是一塊棧內存,所以這句話的意思就是:在棧內存中存放了一個指向一塊堆內存的指針p。在程序會先確定在堆中分配內存的大小,然後調用operator new分配內存,然後返回這塊內存的首地址,放入棧中,他在VC6下的彙編代碼如下:
      00401028     push          14h
      0040102A     call          operator new (00401060)
      0040102F     add           esp,4
      00401032     mov           dword ptr [ebp-8],eax
      00401035     mov           eax,dword ptr [ebp-8]
      00401038     mov           dword ptr [ebp-4],eax
      這裏,我們爲了簡單並沒有釋放內存,那麼該怎麼去釋放呢?是delete p麼?澳,錯了,應該是delete []p,這是爲了告訴編譯器:我刪除的是一個數組,VC6就會根據相應的Cookie信息去進行釋放內存的工作。
      好了,我們回到我們的主題:堆和棧究竟有什麼區別? 
      主要的區別由以下幾點:
      1、管理方式不同;
      2、空間大小不同;
      3、能否產生碎片不同;
      4、生長方向不同;
      5、分配方式不同;
      6、分配效率不同;
      管理方式:對於棧來講,是由編譯器自動管理,無需我們手工控制;對於堆來說,釋放工作由程序員控制,容易產生memory leak。


申請後系統的響應 
棧:只要棧的剩餘空間大於所申請空間,系統將爲程序提供內存,否則將報異常提示棧溢出。 
堆:首先應該知道操作系統有一個記錄空閒內存地址的鏈表,當系統收到程序的申請時, 
會遍歷該鏈表,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閒結點鏈表中刪除,並將該結點的空間分配給程序,另外,對於大多數系統,會在這塊內存空間中的首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本內存空間。另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閒鏈表中。


      空間大小:一般來講在32位系統下,堆內存可以達到4G的空間,從這個角度來看堆內存幾乎是沒有什麼限制的。但是對於棧來講,一般都是有一定的空間大小的,例如,在VC6下面,默認的棧空間大小是1M(好像是,記不清楚了)。當然,我們可以修改:    
      打開工程,依次操作菜單如下:Project->Setting->Link,在Category 中選中Output,然後在Reserve中設定堆棧的最大值和commit。
注意:reserve最小值爲4Byte;commit是保留在虛擬內存的頁文件裏面,它設置的較大會使棧開闢較大的值,可能增加內存的開銷和啓動時間。


申請大小的限制 
棧:在Windows下,棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因此,能從棧獲得的空間較小。 
堆:堆是向高地址擴展的數據結構,是不連續的內存區域。這是由於系統是用鏈表來存儲的空閒內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。


      碎片問題:對於堆來講,頻繁的new/delete勢必會造成內存空間的不連續,從而造成大量的碎片,使程序效率降低。對於棧來講,則不會存在這個問題,因爲棧是先進後出的隊列,他們是如此的一一對應,以至於永遠都不可能有一個內存塊從棧中間彈出,在他彈出之前,在他上面的後進的棧內容已經被彈出,詳細的可以參考數據結構,這裏我們就不再一一討論了。
      生長方向:對於堆來講,生長方向是向上的,也就是向着內存地址增加的方向;對於棧來講,它的生長方向是向下的,是向着內存地址減小的方向增長。
      分配方式:堆都是動態分配的,沒有靜態分配的堆。棧有2種分配方式:靜態分配和動態分配。靜態分配是編譯器完成的,比如局部變量的分配。動態分配由alloca函數進行分配,但是棧的動態分配和堆是不同的,他的動態分配是由編譯器進行釋放,無需我們手工實現。


堆和棧中的存儲內容 
棧: 在函數調用時,第一個進棧的是主函數中後的下一條指令(函數調用語句的下一條可執行語句)的地址,然後是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧的,然後是函數中的局部變量。注意靜態變量是不入棧的。 
當本次函數調用結束後,局部變量先出棧,然後是參數,最後棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續運行。 
堆:一般是在堆的頭部用一個字節存放堆的大小。堆中的具體內容有程序員安排。 


存取效率的比較 
char s1[] = "aaaaaaaaaaaaaaa"; 
char *s2 = "bbbbbbbbbbbbbbbbb"; 
aaaaaaaaaaa是在運行時刻賦值的; 
而bbbbbbbbbbb是在編譯時就確定的; 
但是,在以後的存取中,在棧上的數組比指針所指向的字符串(例如堆)快。 
比如: 
#include 
void main() 

char a = 1; 
char c[] = "1234567890"; 
char *p ="1234567890"; 
a = c[1]; 
a = p[1]; 
return; 

對應的彙編代碼 
10: a = c[1]; 
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh] 
0040106A 88 4D FC mov byte ptr [ebp-4],cl 
11: a = p[1]; 
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h] 
00401070 8A 42 01 mov al,byte ptr [edx+1] 
00401073 88 45 FC mov byte ptr [ebp-4],al 
第一種在讀取時直接就把字符串中的元素讀到寄存器cl中,而第二種則要先把指針值讀到edx中,在根據edx讀取字符,顯然慢了。


      分配效率:棧是機器系統提供的數據結構,計算機會在底層對棧提供支持:分配專門的寄存器存放棧的地址,壓棧出棧都有專門的指令執行,這就決定了棧的效率比較高。堆則是C/C++函數庫提供的,它的機制是很複雜的,例如爲了分配一塊內存,庫函數會按照一定的算法(具體的算法可以參考數據結構/操作系統)在堆內存中搜索可用的足夠大小的空間,如果沒有足夠大小的空間(可能是由於內存碎片太多),就有可能調用系統功能去增加程序數據段的內存空間,這樣就有機會分到足夠大小的內存,然後進行返回。顯然,堆的效率比棧要低得多。
      從這裏我們可以看到,堆和棧相比,由於大量new/delete的使用,容易造成大量的內存碎片;由於沒有專門的系統支持,效率很低;由於可能引發用戶態和核心態的切換,內存的申請,代價變得更加昂貴。所以棧在程序中是應用最廣泛的,就算是函數的調用也利用棧去完成,函數調用過程中的參數,返回地址,EBP和局部變量都採用棧的方式存放。所以,我們推薦大家儘量用棧,而不是用堆。
      雖然棧有如此衆多的好處,但是由於和堆相比不是那麼靈活,有時候分配大量的內存空間,還是用堆好一些。
      無論是堆還是棧,都要防止越界現象的發生(除非你是故意使其越界),因爲越界的結果要麼是程序崩潰,要麼是摧毀程序的堆、棧結構,產生以想不到的結果,就算是在你的程序運行過程中,沒有發生上面的問題,你還是要小心,說不定什麼時候就崩掉,那時候debug可是相當困難的:)
      對了,還有一件事,如果有人把堆棧合起來說,那它的意思是棧,可不是堆


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章