serial 終端設備驅動分析

在tty終端設備分析一文中,說過串口終端也是tty的一類,內核對串口終端的驅動進行了封裝,代碼在drivers/tty/serial中。

1. 先看幾個重要的數據結構

struct uart_driver {
	struct module		*owner;
	const char		*driver_name;	//驅動名
	const char		*dev_name;	//設備名
	int			 major;	//主設備號
	int			 minor;	//次設備號
	int			 nr;	//串口個數
	struct console		*cons;	//控制檯設備

	/*
	 * these are private; the low level driver should not
	 * touch these; they should be initialised to NULL
	 */
	struct uart_state	*state;	//串口狀態
	struct tty_driver	*tty_driver;	//封裝的tty_driver
};
struct uart_state {
	struct tty_port		port;	//內嵌一個tty_port結構

	int			pm_state;
	struct circ_buf		xmit;

	struct tasklet_struct	tlet;
	struct uart_port	*uart_port;	//指向uart_port結構
};
struct uart_port {
	spinlock_t		lock;			/* port lock */
	unsigned long		iobase;			/* in/out[bwl] */	//io端口基地址
	unsigned char __iomem	*membase;		/* read/write[bwl] */	
	unsigned int		(*serial_in)(struct uart_port *, int);
	void			(*serial_out)(struct uart_port *, int, int);
	void			(*set_termios)(struct uart_port *,
				               struct ktermios *new,
				               struct ktermios *old);
	void			(*pm)(struct uart_port *, unsigned int state,
				      unsigned int old);
	unsigned int		irq;			/* irq number */	//中斷號
	unsigned long		irqflags;		/* irq flags  */	//中斷標誌
	unsigned int		uartclk;		/* base uart clock */
	unsigned int		fifosize;		/* tx fifo size */	//fifo大小
	unsigned char		x_char;			/* xon/xoff char */
	unsigned char		regshift;		/* reg offset shift */
	unsigned char		iotype;			/* io access style */	//io訪問類型
	unsigned char		unused1;

#define UPIO_PORT		(0)
#define UPIO_HUB6		(1)
#define UPIO_MEM		(2)
#define UPIO_MEM32		(3)
#define UPIO_AU			(4)			/* Au1x00 type IO */
#define UPIO_TSI		(5)			/* Tsi108/109 type IO */
#define UPIO_DWAPB		(6)			/* DesignWare APB UART */
#define UPIO_RM9000		(7)			/* RM9000 type IO */
#define UPIO_DWAPB32		(8)			/* DesignWare APB UART (32 bit accesses) */

	unsigned int		read_status_mask;	/* driver specific */
	unsigned int		ignore_status_mask;	/* driver specific */
	struct uart_state	*state;			/* pointer to parent state */	//指向uart_state結構
	struct uart_icount	icount;			/* statistics */

	struct console		*cons;			/* struct console, if any */
#if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(SUPPORT_SYSRQ)
	unsigned long		sysrq;			/* sysrq timeout */
#endif

	upf_t			flags;

#define UPF_FOURPORT		((__force upf_t) (1 << 1))
#define UPF_SAK			((__force upf_t) (1 << 2))
#define UPF_SPD_MASK		((__force upf_t) (0x1030))
#define UPF_SPD_HI		((__force upf_t) (0x0010))
#define UPF_SPD_VHI		((__force upf_t) (0x0020))
#define UPF_SPD_CUST		((__force upf_t) (0x0030))
#define UPF_SPD_SHI		((__force upf_t) (0x1000))
#define UPF_SPD_WARP		((__force upf_t) (0x1010))
#define UPF_SKIP_TEST		((__force upf_t) (1 << 6))
#define UPF_AUTO_IRQ		((__force upf_t) (1 << 7))
#define UPF_HARDPPS_CD		((__force upf_t) (1 << 11))
#define UPF_LOW_LATENCY		((__force upf_t) (1 << 13))
#define UPF_BUGGY_UART		((__force upf_t) (1 << 14))
#define UPF_NO_TXEN_TEST	((__force upf_t) (1 << 15))
#define UPF_MAGIC_MULTIPLIER	((__force upf_t) (1 << 16))
#define UPF_CONS_FLOW		((__force upf_t) (1 << 23))
#define UPF_SHARE_IRQ		((__force upf_t) (1 << 24))
/* The exact UART type is known and should not be probed.  */
#define UPF_FIXED_TYPE		((__force upf_t) (1 << 27))
#define UPF_BOOT_AUTOCONF	((__force upf_t) (1 << 28))
#define UPF_FIXED_PORT		((__force upf_t) (1 << 29))
#define UPF_DEAD		((__force upf_t) (1 << 30))
#define UPF_IOREMAP		((__force upf_t) (1 << 31))

#define UPF_CHANGE_MASK		((__force upf_t) (0x17fff))
#define UPF_USR_MASK		((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY))

	unsigned int		mctrl;			/* current modem ctrl settings */
	unsigned int		timeout;		/* character-based timeout */
	unsigned int		type;			/* port type */
	const struct uart_ops	*ops;	//串口操作函數集
	unsigned int		custom_divisor;
	unsigned int		line;			/* port index */	//端口號
	resource_size_t		mapbase;		/* for ioremap */
	struct device		*dev;			/* parent device */
	unsigned char		hub6;			/* this should be in the 8250 driver */
	unsigned char		suspended;
	unsigned char		irq_wake;
	unsigned char		unused[2];
	void			*private_data;		/* generic platform data pointer */
};
再看下tty層的tty_port結構

struct tty_port {
	struct tty_struct	*tty;		/* Back pointer */
	const struct tty_port_operations *ops;	/* Port operations */
	spinlock_t		lock;		/* Lock protecting tty field */
	int			blocked_open;	/* Waiting to open */
	int			count;		/* Usage count */
	wait_queue_head_t	open_wait;	/* Open waiters */
	wait_queue_head_t	close_wait;	/* Close waiters */
	wait_queue_head_t	delta_msr_wait;	/* Modem status change */
	unsigned long		flags;		/* TTY flags ASY_*/
	unsigned char		console:1;	/* port is a console */
	struct mutex		mutex;		/* Locking */
	struct mutex		buf_mutex;	/* Buffer alloc lock */
	unsigned char		*xmit_buf;	/* Optional buffer */
	unsigned int		close_delay;	/* Close port delay */
	unsigned int		closing_wait;	/* Delay for output */
	int			drain_delay;	/* Set to zero if no pure time
						   based drain is needed else
						   set to size of fifo */
	struct kref		kref;		/* Ref counter */
};
struct uart_ops {
	unsigned int	(*tx_empty)(struct uart_port *);
	void		(*set_mctrl)(struct uart_port *, unsigned int mctrl);
	unsigned int	(*get_mctrl)(struct uart_port *);
	void		(*stop_tx)(struct uart_port *);
	void		(*start_tx)(struct uart_port *);
	void		(*send_xchar)(struct uart_port *, char ch);
	void		(*stop_rx)(struct uart_port *);
	void		(*enable_ms)(struct uart_port *);
	void		(*break_ctl)(struct uart_port *, int ctl);
	int		(*startup)(struct uart_port *);
	void		(*shutdown)(struct uart_port *);
	void		(*flush_buffer)(struct uart_port *);
	void		(*set_termios)(struct uart_port *, struct ktermios *new,
				       struct ktermios *old);
	void		(*set_ldisc)(struct uart_port *, int new);
	void		(*pm)(struct uart_port *, unsigned int state,
			      unsigned int oldstate);
	int		(*set_wake)(struct uart_port *, unsigned int state);

	/*
	 * Return a string describing the type of the port
	 */
	const char *(*type)(struct uart_port *);

	/*
	 * Release IO and memory resources used by the port.
	 * This includes iounmap if necessary.
	 */
	void		(*release_port)(struct uart_port *);

	/*
	 * Request IO and memory resources used by the port.
	 * This includes iomapping the port if necessary.
	 */
	int		(*request_port)(struct uart_port *);
	void		(*config_port)(struct uart_port *, int);
	int		(*verify_port)(struct uart_port *, struct serial_struct *);
	int		(*ioctl)(struct uart_port *, unsigned int, unsigned long);
#ifdef CONFIG_CONSOLE_POLL
	void	(*poll_put_char)(struct uart_port *, unsigned char);
	int		(*poll_get_char)(struct uart_port *);
#endif
};
2. 串口驅動初始化流程

先看幾個靜態定義的數據結構

static struct uart_ops s3c24xx_serial_ops = {
	.pm		= s3c24xx_serial_pm,
	.tx_empty	= s3c24xx_serial_tx_empty,
	.get_mctrl	= s3c24xx_serial_get_mctrl,
	.set_mctrl	= s3c24xx_serial_set_mctrl,
	.stop_tx	= s3c24xx_serial_stop_tx,
	.start_tx	= s3c24xx_serial_start_tx,
	.stop_rx	= s3c24xx_serial_stop_rx,
	.enable_ms	= s3c24xx_serial_enable_ms,
	.break_ctl	= s3c24xx_serial_break_ctl,
	.startup	= s3c24xx_serial_startup,
	.shutdown	= s3c24xx_serial_shutdown,
	.set_termios	= s3c24xx_serial_set_termios,
	.type		= s3c24xx_serial_type,
	.release_port	= s3c24xx_serial_release_port,
	.request_port	= s3c24xx_serial_request_port,
	.config_port	= s3c24xx_serial_config_port,
	.verify_port	= s3c24xx_serial_verify_port,
};
static struct uart_driver s3c24xx_uart_drv = {
	.owner		= THIS_MODULE,
	.driver_name	= "s3c2410_serial",
	.nr		= CONFIG_SERIAL_SAMSUNG_UARTS,
	.cons		= S3C24XX_SERIAL_CONSOLE,
	.dev_name	= S3C24XX_SERIAL_NAME,
	.major		= S3C24XX_SERIAL_MAJOR,
	.minor		= S3C24XX_SERIAL_MINOR,
};
static struct s3c24xx_uart_port s3c24xx_serial_ports[CONFIG_SERIAL_SAMSUNG_UARTS] = {
	[0] = {
		.port = {
			.lock		= __SPIN_LOCK_UNLOCKED(s3c24xx_serial_ports[0].port.lock),
			.iotype		= UPIO_MEM,
			.irq		= IRQ_S3CUART_RX0,
			.uartclk	= 0,
			.fifosize	= 16,
			.ops		= &s3c24xx_serial_ops,
			.flags		= UPF_BOOT_AUTOCONF,
			.line		= 0,
		}
	},
	[1] = {
		.port = {
			.lock		= __SPIN_LOCK_UNLOCKED(s3c24xx_serial_ports[1].port.lock),
			.iotype		= UPIO_MEM,
			.irq		= IRQ_S3CUART_RX1,
			.uartclk	= 0,
			.fifosize	= 16,
			.ops		= &s3c24xx_serial_ops,
			.flags		= UPF_BOOT_AUTOCONF,
			.line		= 1,
		}
	},
#if CONFIG_SERIAL_SAMSUNG_UARTS > 2

	[2] = {
		.port = {
			.lock		= __SPIN_LOCK_UNLOCKED(s3c24xx_serial_ports[2].port.lock),
			.iotype		= UPIO_MEM,
			.irq		= IRQ_S3CUART_RX2,
			.uartclk	= 0,
			.fifosize	= 16,
			.ops		= &s3c24xx_serial_ops,
			.flags		= UPF_BOOT_AUTOCONF,
			.line		= 2,
		}
	},
#endif
#if CONFIG_SERIAL_SAMSUNG_UARTS > 3
	[3] = {
		.port = {
			.lock		= __SPIN_LOCK_UNLOCKED(s3c24xx_serial_ports[3].port.lock),
			.iotype		= UPIO_MEM,
			.irq		= IRQ_S3CUART_RX3,
			.uartclk	= 0,
			.fifosize	= 16,
			.ops		= &s3c24xx_serial_ops,
			.flags		= UPF_BOOT_AUTOCONF,
			.line		= 3,
		}
	}
#endif
};
其實struct s3c24xx_uart_port內嵌了一個struct uart_port。

初始化1:平臺設備的資源初始化,這個是最早的,在setup_arch裏面被調用

static void __init smdk2440_map_io(void)
{
	s3c24xx_init_io(smdk2440_iodesc, ARRAY_SIZE(smdk2440_iodesc));
	s3c24xx_init_clocks(16934400);
	s3c24xx_init_uarts(smdk2440_uartcfgs, ARRAY_SIZE(smdk2440_uartcfgs));
}
void __init s3c24xx_init_uarts(struct s3c2410_uartcfg *cfg, int no)
{
	if (cpu == NULL)
		return;

	if (cpu->init_uarts == NULL) {
		printk(KERN_ERR "s3c24xx_init_uarts: cpu has no uart init\n");
	} else
		(cpu->init_uarts)(cfg, no);
}
void __init s3c2410_init_uarts(struct s3c2410_uartcfg *cfg, int no)
{
	s3c24xx_init_uartdevs("s3c2410-uart", s3c2410_uart_resources, cfg, no);
}
void __init s3c24xx_init_uartdevs(char *name,
				  struct s3c24xx_uart_resources *res,
				  struct s3c2410_uartcfg *cfg, int no)
{
	struct platform_device *platdev;
	struct s3c2410_uartcfg *cfgptr = uart_cfgs;
	struct s3c24xx_uart_resources *resp;
	int uart;

	memcpy(cfgptr, cfg, sizeof(struct s3c2410_uartcfg) * no);

	for (uart = 0; uart < no; uart++, cfg++, cfgptr++) {
		platdev = s3c24xx_uart_src[cfgptr->hwport];

		resp = res + cfgptr->hwport;

		s3c24xx_uart_devs[uart] = platdev;

		platdev->name = name;
		platdev->resource = resp->resources;
		platdev->num_resources = resp->nr_resources;

		platdev->dev.platform_data = cfgptr;
	}

	nr_uarts = no;
}
初始化2:平臺設備的添加

static int __init s3c_arch_init(void)
{
	int ret;

	// do the correct init for cpu

	if (cpu == NULL)
		panic("s3c_arch_init: NULL cpu\n");

	ret = (cpu->init)();
	if (ret != 0)
		return ret;

	ret = platform_add_devices(s3c24xx_uart_devs, nr_uarts);
	return ret;
}

arch_initcall(s3c_arch_init);

初始化3:註冊uart_driver

static int __init s3c24xx_serial_modinit(void)
{
	int ret;

	ret = uart_register_driver(&s3c24xx_uart_drv);
	if (ret < 0) {
		printk(KERN_ERR "failed to register UART driver\n");
		return -1;
	}

	return 0;
}
int uart_register_driver(struct uart_driver *drv)
{
	struct tty_driver *normal;
	int i, retval;

	BUG_ON(drv->state);

	/*
	 * Maybe we should be using a slab cache for this, especially if
	 * we have a large number of ports to handle.
	 */
	drv->state = kzalloc(sizeof(struct uart_state) * drv->nr, GFP_KERNEL);
	if (!drv->state)
		goto out;

	normal = alloc_tty_driver(drv->nr);	//分配tty_driver
	if (!normal)
		goto out_kfree;

	drv->tty_driver = normal;

	normal->owner		= drv->owner;
	normal->driver_name	= drv->driver_name;
	normal->name		= drv->dev_name;
	normal->major		= drv->major;
	normal->minor_start	= drv->minor;
	normal->type		= TTY_DRIVER_TYPE_SERIAL;
	normal->subtype		= SERIAL_TYPE_NORMAL;
	normal->init_termios	= tty_std_termios;
	normal->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
	normal->init_termios.c_ispeed = normal->init_termios.c_ospeed = 9600;
	normal->flags		= TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
	normal->driver_state    = drv;
	tty_set_operations(normal, &uart_ops);	//設置tty_operations,注意uart_ops是一個tty_operations結構,不是結構名

	/*
	 * Initialise the UART state(s).
	 */
	for (i = 0; i < drv->nr; i++) {
		struct uart_state *state = drv->state + i;
		struct tty_port *port = &state->port;

		tty_port_init(port);
		port->ops = &uart_port_ops;
		port->close_delay     = 500;	/* .5 seconds */
		port->closing_wait    = 30000;	/* 30 seconds */
		tasklet_init(&state->tlet, uart_tasklet_action,
			     (unsigned long)state);
	}

	retval = tty_register_driver(normal);
	if (retval >= 0)
		return retval;

	put_tty_driver(normal);
out_kfree:
	kfree(drv->state);
out:
	return -ENOMEM;
}
初始化4:平臺驅動註冊

static int __init s3c2440_serial_init(void)
{
	return s3c24xx_serial_init(&s3c2440_serial_driver, &s3c2440_uart_inf);
}
int s3c24xx_serial_init(struct platform_driver *drv,
			struct s3c24xx_uart_info *info)
{
	dbg("s3c24xx_serial_init(%p,%p)\n", drv, info);

	drv->driver.pm = SERIAL_SAMSUNG_PM_OPS;

	return platform_driver_register(drv);
}
會觸發probe函數,有幾個串口,就會觸發幾次。

static int s3c2440_serial_probe(struct platform_device *dev)
{
	dbg("s3c2440_serial_probe: dev=%p\n", dev);
	return s3c24xx_serial_probe(dev, &s3c2440_uart_inf);
}
int s3c24xx_serial_probe(struct platform_device *dev,
			 struct s3c24xx_uart_info *info)
{
	struct s3c24xx_uart_port *ourport;
	int ret;

	dbg("s3c24xx_serial_probe(%p, %p) %d\n", dev, info, probe_index);

	ourport = &s3c24xx_serial_ports[probe_index];	//取得相應端口的s3c24xx_uart_port結構
	probe_index++;

	dbg("%s: initialising port %p...\n", __func__, ourport);

	ret = s3c24xx_serial_init_port(ourport, info, dev);	//平臺數據的初始化
	if (ret < 0)
		goto probe_err;

	dbg("%s: adding port\n", __func__);
	uart_add_one_port(&s3c24xx_uart_drv, &ourport->port);	//調用serial層的接口函數添加uart_port
	platform_set_drvdata(dev, &ourport->port);

	ret = device_create_file(&dev->dev, &dev_attr_clock_source);
	if (ret < 0)
		printk(KERN_ERR "%s: failed to add clksrc attr.\n", __func__);

	ret = s3c24xx_serial_cpufreq_register(ourport);
	if (ret < 0)
		dev_err(&dev->dev, "failed to add cpufreq notifier\n");

	return 0;

 probe_err:
	return ret;
}
static int s3c24xx_serial_init_port(struct s3c24xx_uart_port *ourport,
				    struct s3c24xx_uart_info *info,
				    struct platform_device *platdev)
{
	struct uart_port *port = &ourport->port;
	struct s3c2410_uartcfg *cfg;
	struct resource *res;
	int ret;

	dbg("s3c24xx_serial_init_port: port=%p, platdev=%p\n", port, platdev);

	if (platdev == NULL)
		return -ENODEV;

	cfg = s3c24xx_dev_to_cfg(&platdev->dev);

	if (port->mapbase != 0)
		return 0;

	if (cfg->hwport > CONFIG_SERIAL_SAMSUNG_UARTS) {
		printk(KERN_ERR "%s: port %d bigger than %d\n", __func__,
		       cfg->hwport, CONFIG_SERIAL_SAMSUNG_UARTS);
		return -ERANGE;
	}

	/* setup info for port */
	port->dev	= &platdev->dev;
	ourport->info	= info;

	/* copy the info in from provided structure */
	ourport->port.fifosize = info->fifosize;

	dbg("s3c24xx_serial_init_port: %p (hw %d)...\n", port, cfg->hwport);

	port->uartclk = 1;

	if (cfg->uart_flags & UPF_CONS_FLOW) {
		dbg("s3c24xx_serial_init_port: enabling flow control\n");
		port->flags |= UPF_CONS_FLOW;
	}

	/* sort our the physical and virtual addresses for each UART */

	res = platform_get_resource(platdev, IORESOURCE_MEM, 0);
	if (res == NULL) {
		printk(KERN_ERR "failed to find memory resource for uart\n");
		return -EINVAL;
	}

	dbg("resource %p (%lx..%lx)\n", res, res->start, res->end);

	port->mapbase = res->start;
	port->membase = S3C_VA_UART + (res->start & 0xfffff);
	ret = platform_get_irq(platdev, 0);
	if (ret < 0)
		port->irq = 0;
	else {
		port->irq = ret;
		ourport->rx_irq = ret;
		ourport->tx_irq = ret + 1;
	}
	
	ret = platform_get_irq(platdev, 1);
	if (ret > 0)
		ourport->tx_irq = ret;

	ourport->clk	= clk_get(&platdev->dev, "uart");

	dbg("port: map=%08x, mem=%08x, irq=%d (%d,%d), clock=%ld\n",
	    port->mapbase, port->membase, port->irq,
	    ourport->rx_irq, ourport->tx_irq, port->uartclk);

	/* reset the fifos (and setup the uart) */
	s3c24xx_serial_resetport(port, cfg);
	return 0;
}
int uart_add_one_port(struct uart_driver *drv, struct uart_port *uport)
{
	struct uart_state *state;
	struct tty_port *port;
	int ret = 0;
	struct device *tty_dev;

	BUG_ON(in_interrupt());

	if (uport->line >= drv->nr)
		return -EINVAL;

	state = drv->state + uport->line;	//在uart_register_driver裏面已經分配好uart_state數組
	port = &state->port;	//獲取tty_port

	mutex_lock(&port_mutex);
	mutex_lock(&port->mutex);
	if (state->uart_port) {
		ret = -EINVAL;
		goto out;
	}

	state->uart_port = uport;	//設置uart_state中的uart_port指向參數
	state->pm_state = -1;

	uport->cons = drv->cons;
	uport->state = state;

	/*
	 * If this port is a console, then the spinlock is already
	 * initialised.
	 */
	if (!(uart_console(uport) && (uport->cons->flags & CON_ENABLED))) {
		spin_lock_init(&uport->lock);
		lockdep_set_class(&uport->lock, &port_lock_key);
	}

	uart_configure_port(drv, state, uport);	//配置端口

	/*
	 * Register the port whether it's detected or not.  This allows
	 * setserial to be used to alter this ports parameters.
	 */
	tty_dev = tty_register_device(drv->tty_driver, uport->line, uport->dev);	//生成tty_struct結構
	if (likely(!IS_ERR(tty_dev))) {
		device_init_wakeup(tty_dev, 1);
		device_set_wakeup_enable(tty_dev, 0);
	} else
		printk(KERN_ERR "Cannot register tty device on line %d\n",
		       uport->line);

	/*
	 * Ensure UPF_DEAD is not set.
	 */
	uport->flags &= ~UPF_DEAD;

 out:
	mutex_unlock(&port->mutex);
	mutex_unlock(&port_mutex);

	return ret;
}
static void
uart_configure_port(struct uart_driver *drv, struct uart_state *state,
		    struct uart_port *port)
{
	unsigned int flags;

	/*
	 * If there isn't a port here, don't do anything further.
	 */
	if (!port->iobase && !port->mapbase && !port->membase)
		return;

	/*
	 * Now do the auto configuration stuff.  Note that config_port
	 * is expected to claim the resources and map the port for us.
	 */
	flags = 0;
	if (port->flags & UPF_AUTO_IRQ)
		flags |= UART_CONFIG_IRQ;
	if (port->flags & UPF_BOOT_AUTOCONF) {
		if (!(port->flags & UPF_FIXED_TYPE)) {
			port->type = PORT_UNKNOWN;
			flags |= UART_CONFIG_TYPE;
		}
		port->ops->config_port(port, flags);	//對應於s3c24xx_serial_config_port
	}

	if (port->type != PORT_UNKNOWN) {
		unsigned long flags;

		uart_report_port(drv, port);

		/* Power up port for set_mctrl() */
		uart_change_pm(state, 0);

		/*
		 * Ensure that the modem control lines are de-activated.
		 * keep the DTR setting that is set in uart_set_options()
		 * We probably don't need a spinlock around this, but
		 */
		spin_lock_irqsave(&port->lock, flags);
		port->ops->set_mctrl(port, port->mctrl & TIOCM_DTR);
		spin_unlock_irqrestore(&port->lock, flags);

		/*
		 * If this driver supports console, and it hasn't been
		 * successfully registered yet, try to re-register it.
		 * It may be that the port was not available.
		 */
		if (port->cons && !(port->cons->flags & CON_ENABLED))
			register_console(port->cons);

		/*
		 * Power down all ports by default, except the
		 * console if we have one.
		 */
		if (!uart_console(port))
			uart_change_pm(state, 3);
	}
}


3. 串口終端的打開:

打開的過程從tty_open開始,先調用線路規程的open,再調用tty_operations的open函數,對應於uart_open

static const struct tty_operations uart_ops = {
	.open		= uart_open,
	.close		= uart_close,
	.write		= uart_write,
	.put_char	= uart_put_char,
	.flush_chars	= uart_flush_chars,
	.write_room	= uart_write_room,
	.chars_in_buffer= uart_chars_in_buffer,
	.flush_buffer	= uart_flush_buffer,
	.ioctl		= uart_ioctl,
	.throttle	= uart_throttle,
	.unthrottle	= uart_unthrottle,
	.send_xchar	= uart_send_xchar,
	.set_termios	= uart_set_termios,
	.set_ldisc	= uart_set_ldisc,
	.stop		= uart_stop,
	.start		= uart_start,
	.hangup		= uart_hangup,
	.break_ctl	= uart_break_ctl,
	.wait_until_sent= uart_wait_until_sent,
#ifdef CONFIG_PROC_FS
	.proc_fops	= &uart_proc_fops,
#endif
	.tiocmget	= uart_tiocmget,
	.tiocmset	= uart_tiocmset,
	.get_icount	= uart_get_icount,
#ifdef CONFIG_CONSOLE_POLL
	.poll_init	= uart_poll_init,
	.poll_get_char	= uart_poll_get_char,
	.poll_put_char	= uart_poll_put_char,
#endif
};
static int uart_open(struct tty_struct *tty, struct file *filp)
{
	struct uart_driver *drv = (struct uart_driver *)tty->driver->driver_state;
	struct uart_state *state;
	struct tty_port *port;
	int retval, line = tty->index;

	BUG_ON(!tty_locked());
	pr_debug("uart_open(%d) called\n", line);

	/*
	 * We take the semaphore inside uart_get to guarantee that we won't
	 * be re-entered while allocating the state structure, or while we
	 * request any IRQs that the driver may need.  This also has the nice
	 * side-effect that it delays the action of uart_hangup, so we can
	 * guarantee that state->port.tty will always contain something
	 * reasonable.
	 */
	state = uart_get(drv, line);	//獲取uart_state結構
	if (IS_ERR(state)) {
		retval = PTR_ERR(state);
		goto fail;
	}
	port = &state->port;

	/*
	 * Once we set tty->driver_data here, we are guaranteed that
	 * uart_close() will decrement the driver module use count.
	 * Any failures from here onwards should not touch the count.
	 */
	tty->driver_data = state;
	state->uart_port->state = state;
	tty->low_latency = (state->uart_port->flags & UPF_LOW_LATENCY) ? 1 : 0;
	tty->alt_speed = 0;
	tty_port_tty_set(port, tty);

	/*
	 * If the port is in the middle of closing, bail out now.
	 */
	if (tty_hung_up_p(filp)) {
		retval = -EAGAIN;
		port->count--;
		mutex_unlock(&port->mutex);
		goto fail;
	}

	/*
	 * Make sure the device is in D0 state.
	 */
	if (port->count == 1)
		uart_change_pm(state, 0);

	/*
	 * Start up the serial port.
	 */
	retval = uart_startup(tty, state, 0);	//啓動串口

	/*
	 * If we succeeded, wait until the port is ready.
	 */
	mutex_unlock(&port->mutex);
	if (retval == 0)
		retval = tty_port_block_til_ready(port, tty, filp);

fail:
	return retval;
}
static int uart_startup(struct tty_struct *tty, struct uart_state *state, int init_hw)
{
	struct uart_port *uport = state->uart_port;
	struct tty_port *port = &state->port;
	unsigned long page;
	int retval = 0;

	if (port->flags & ASYNC_INITIALIZED)
		return 0;

	/*
	 * Set the TTY IO error marker - we will only clear this
	 * once we have successfully opened the port.  Also set
	 * up the tty->alt_speed kludge
	 */
	set_bit(TTY_IO_ERROR, &tty->flags);

	if (uport->type == PORT_UNKNOWN)
		return 0;

	/*
	 * Initialise and allocate the transmit and temporary
	 * buffer.
	 */
	if (!state->xmit.buf) {
		/* This is protected by the per port mutex */
		page = get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;

		state->xmit.buf = (unsigned char *) page;
		uart_circ_clear(&state->xmit);
	}

	retval = uport->ops->startup(uport);	//調用uart_port的uart_ops的startup函數
	if (retval == 0) {
		if (uart_console(uport) && uport->cons->cflag) {
			tty->termios->c_cflag = uport->cons->cflag;
			uport->cons->cflag = 0;
		}
		/*
		 * Initialise the hardware port settings.
		 */
		uart_change_speed(tty, state, NULL);

		if (init_hw) {
			/*
			 * Setup the RTS and DTR signals once the
			 * port is open and ready to respond.
			 */
			if (tty->termios->c_cflag & CBAUD)
				uart_set_mctrl(uport, TIOCM_RTS | TIOCM_DTR);
		}

		if (port->flags & ASYNC_CTS_FLOW) {
			spin_lock_irq(&uport->lock);
			if (!(uport->ops->get_mctrl(uport) & TIOCM_CTS))
				tty->hw_stopped = 1;
			spin_unlock_irq(&uport->lock);
		}

		set_bit(ASYNCB_INITIALIZED, &port->flags);

		clear_bit(TTY_IO_ERROR, &tty->flags);
	}

	/*
	 * This is to allow setserial on this port. People may want to set
	 * port/irq/type and then reconfigure the port properly if it failed
	 * now.
	 */
	if (retval && capable(CAP_SYS_ADMIN))
		retval = 0;

	return retval;
}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章