強化學習系列(5) - DQN及其改進

採用兩個深度神經網絡(DNN)來學習狀態到動作的映射,和神經網絡權重的更新,以解決Q表狀態-動作值決策時空間增長而計算存儲高複雜度的問題。此外,還包括double DQN(解決過擬合),Prioritized Experience Replay(解決以更低的計算時間獲得收斂效果),和Dueling DQN這些對DQN的提升方法。

"""
Zoe大腦RL_brain
"""
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '2'
import numpy as np 
import pandas as pd 
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

np.random.seed(1)
tf.set_random_seed(1)

# Deep Q Network off-policy
class DeepQNetwork:
    def __init__(
        self,
        n_actions,
        n_features,
        learning_rate=0.01,
        reward_decay=0.9,
        e_greedy=0.9,
        replace_target_iter=300,
        memory_size=500,
        batch_size=32,
        e_greedy_increment=None,
        output_graph=False,
    ):
        self.n_actions = n_actions
        self.n_features = n_features
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon_max = e_greedy
        self.replace_target_iter = replace_target_iter
        self.memory_size = memory_size
        self.batch_size = batch_size
        self.epsilon_increment = e_greedy_increment
        self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max

        # total learning step
        self.learn_step_counter = 0

        # initialize zero memory [s, a, r, s_]
        self.memory = np.zeros((self.memory_size, n_features * 2 + 2))

        # consist of [target_net, evaluate_net]
        self._build_net()
        t_params = tf.get_collection('target_net_params')
        e_params = tf.get_collection('eval_net_params')
        self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]

        self.sess = tf.Session()

        if output_graph:
            # $ tensorboard --logdir=logs
            # tf.train.SummaryWriter soon be deprecated, use following
            tf.summary.FileWriter("logs/", self.sess.graph)

        self.sess.run(tf.global_variables_initializer())
        self.cost_his = []

        # [n.name for n in tf.get_default_graph().as_graph_def().node]
        # print([n.name for n in tf.get_default_graph().as_graph_def().node])
        tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node]
 
        txt_path = './txt/節點名稱'
        full_path = txt_path+ '.txt'
 
        for tensor_name in tensor_name_list:
            name = tensor_name + '\n'
            file = open(full_path,'a+')
            file.write(name)
        file.close()
    
    def _build_net(self):
        #--------------------build evaluate_net-----------------
        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')
        self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target')
        with tf.variable_scope('eval_net'):
            # c_names(collections_names) are the collections to store variables
            c_names, n_l1, w_initializer, b_initializer = \
                ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
                tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers
        
            # first layer. collections is used later when assign to target net
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer,collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)
        
            # second layer. collections is used later when assign to target net
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_eval = tf.matmul(l1, w2) + b2
        
        with tf.variable_scope('loss'):
            self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
        with tf.variable_scope('train'):
            self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
        
        #-----------------------------build target_net-------------------------------
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_')
        with tf.variable_scope('target_net'):
            # c_names(collections_names) are the collections to store variables
            c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]

            # first layer. collections is used later when assign to target net
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)
            
            # second layer. collections is used later when assign to target net
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_next = tf.matmul(l1, w2) + b2
    
    def store_transition(self, s, a, r, s_):
        if not hasattr(self, 'memory_counter'):
            self.memory_counter = 0
        
        transition = np.hstack((s, [a, r], s_))

        # replace the old memory with new memory
        index = self.memory_counter % self.memory_size
        self.memory[index, :] = transition

        self.memory_counter += 1
    
    def choose_action(self, observation):
        # to have batch dimension when feed into tf placeholder
        observation = observation[np.newaxis, :]

        if np.random.uniform() < self.epsilon:
            # forward feed the observation and get q value for every actions
            actions_value = self.sess.run(self.q_eval, feed_dict={self.s:observation})
            action = np.argmax(actions_value)
        else:
            action = np.random.randint(0, self.n_actions)
        return action

    def learn(self):
        # check to replace target parameters
        if self.learn_step_counter % self.replace_target_iter == 0:
            self.sess.run(self.replace_target_op)
            print('\ntarget_params_replaced\n')

        # sample batch memory from all memory
        if self.memory_counter > self.memory_size:
            sample_index = np.random.choice(self.memory_size, size=self.batch_size)
        else:
            sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
        batch_memory = self.memory[sample_index, :]

        q_next, q_eval = self.sess.run(
            [self.q_next, self.q_eval],
            feed_dict={
                self.s_:batch_memory[:, -self.n_features:],
                self.s:batch_memory[:, :self.n_features],
            })

        # change q_target w.r.t q_eval's action
        q_target =  q_eval.copy()

        batch_index = np.arange(self.batch_size, dtype=np.int32)
        eval_act_index = batch_memory[:, self.n_features].astype(int)
        reward = batch_memory[:, self.n_features + 1]

        q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next,axis=1)
        # print('輸出')
        # print(q_target[batch_index, eval_act_index])
        # print(q_target)
        # print(q_next)
        # print(np.max(q_next))

        """
        For example in this batch I have 2 samples and 3 actions:
        q_eval = 
        [[1, 2, 3],
         [4, 5, 6]]

        q_target = q_eval = 
        [[1, 2, 3],
         [4, 5, 6]]

        Then change q_target with the real q_target value w.r.t the q_eval's action.
        For example in:
            sample 0, I took action 0, and the max q_target value is -1;
            sample 1, I took action 2, and the max q_target value is -2;
        q_target = 
        [[-1, 2, 3],
         [4, 5, -2]]

        So the (q_target-q_eval) becomes:
        [[(-1-1), 0, 0],
         [0, 0, (-2)-(6)]]

        We then backpropagate this error w.r.t the corresponding action to network,
        leave other action as error=0 cause we didn't choose it.
        """

        # train eval network
        _, self.cost = self.sess.run([self._train_op, self.loss],
                                      feed_dict={self.s:batch_memory[:, :self.n_features],
                                                 self.q_target:q_target})
        self.cost_his.append(self.cost)

        # increasing epsilon
        self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
        self.learn_step_counter += 1

    def plot_cost(self):
        import matplotlib.pyplot as plt 
        plt.plot(np.arange(len(self.cost_his)), self.cost_his)
        plt.ylabel('Cost')
        plt.xlabel('traning steps')
        plt.show()

"""     
if __name__ == "__main__":
    DQN = DeepQNetwork(4,2, output_graph=True)

"""
"""
爬山小車案例
"""
import gym 
from RL_brain import DeepQNetwork 

env = gym.make('MountainCar-v0')
env = env.unwrapped

print(env.action_space)
print(env.observation_space)
print(env.observation_space.high)
print(env.observation_space.low)

RL = DeepQNetwork(n_actions=3, n_features=2, learning_rate=0.001, e_greedy=0.9,
                  replace_target_iter=300, memory_size=3000,
                  e_greedy_increment=0.0002,)

total_steps = 0

for i_episode in range(10):
    observation = env.reset()
    ep_r = 0
    while True:
        env.render()

        action = RL.choose_action(observation)

        observation_, reward, done, info = env.step(action)

        position, velocity = observation_

        # the higher the better
        reward = abs(position - (-0.5)) # r in [0, 1]

        RL.store_transition(observation, action, reward, observation_)

        if total_steps > 1000:
            RL.learn()
        
        ep_r += reward
        if done:
            get = '| Get' if observation_[0] >= env.unwrapped.goal_position else '| ----'
            print('Epi: ', i_episode,
                  get,
                  '| Ep_r: ', round(ep_r, 4),
                  '| Epsilon: ', round(RL.epsilon, 2))
            break
        observation = observation_
        total_steps += 1

RL.plot_cost()
"""
小拖車車杆案例
"""
import gym 
from RL_brain import DeepQNetwork 

env = gym.make('CartPole-v0')
env = env.unwrapped

print(env.action_space)
print(env.observation_space)
print(env.observation_space.high)
print(env.observation_space.low)

RL = DeepQNetwork(n_actions=env.action_space.n,
                  n_features=env.observation_space.shape[0],
                  learning_rate=0.01, e_greedy=0.9,
                  replace_target_iter=100, memory_size=2000,
                  e_greedy_increment=0.001,)

total_steps = 0

for i_episode in range(100):
    observation = env.reset()
    ep_r = 0
    while True:
        env.render()

        action = RL.choose_action(observation)

        observation_, reward, done, info = env.step(action)

        # the smaller theta and closer to center the better
        x, x_dot, theta, theta_dot = observation_
        r1 = (env.x_threshold - abs(x))/env.x_threshold - 0.8
        r2 = (env.theta_threshold_radians - abs(theta))/env.theta_threshold_radians - 0.5
        reward = r1 + r2

        RL.store_transition(observation, action, reward, observation_)

        ep_r += reward
        if total_steps > 1000:
            RL.learn()
        
        if done:
            print('episode: ', i_episode,
                  'ep_r: ', round(ep_r, 2),
                  'epsilon: ', round(RL.epsilon, 2))
            break
        observation = observation_
        total_steps += 1

RL.plot_cost()
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章