Android Okhttp主流程源碼分析

在OkHttp3中,其靈活性很大程度上體現在可以 intercept 其任意一個環節,而這個優勢便是okhttp3整個請求響應架構體系的精髓所在,先放出一張主框架請求流程圖,接着再分析源碼。
在這裏插入圖片描述

String url = "http://wwww.baidu.com";
OkHttpClient okHttpClient = new OkHttpClient();
final Request request = new Request.Builder()
        .url(url)
        .build();
Call call = okHttpClient.newCall(request);
call.enqueue(new Callback() {
    @Override
    public void onFailure(Call call, IOException e) {
        Log.d(TAG, "onFailure: ");
    }

    @Override
    public void onResponse(Call call, Response response) throws IOException {
        Log.d(TAG, "onResponse: " + response.body().string());
    }
});

這大概是一個最簡單的一個例子了,在new OkHttpClient()內部使用構造器模式初始化了一些配置信息:支持協議、任務分發器(其內部包含一個線程池,執行異步請求)、連接池(其內部包含一個線程池,維護connection)、連接/讀/寫超時時長等信息。

public Builder() {
    dispatcher = new Dispatcher(); //任務調度器
    protocols = DEFAULT_PROTOCOLS; //支持的協議
    connectionSpecs = DEFAULT_CONNECTION_SPECS;
    eventListenerFactory = EventListener.factory(EventListener.NONE);
    proxySelector = ProxySelector.getDefault();
    cookieJar = CookieJar.NO_COOKIES;
    socketFactory = SocketFactory.getDefault();
    hostnameVerifier = OkHostnameVerifier.INSTANCE;
    certificatePinner = CertificatePinner.DEFAULT;
    proxyAuthenticator = Authenticator.NONE;
    authenticator = Authenticator.NONE;
    connectionPool = new ConnectionPool(); //連接池
    dns = Dns.SYSTEM;
    followSslRedirects = true;
    followRedirects = true;
    retryOnConnectionFailure = true;
    connectTimeout = 10_000;//超時時間
    readTimeout = 10_000;
    writeTimeout = 10_000;
    pingInterval = 0;
}

第一行創建了一個Dispatcher任務調度器,它定義了三個雙向任務隊列,兩個異步隊列:準備執行的請求隊列 readyAsyncCalls、正在運行的請求隊列 runningAsyncCalls;一個正在運行的同步請求隊列 runningSyncCalls

public final class Dispatcher {
    private int maxRequests = 64; //最大請求數量
    private int maxRequestsPerHost = 5; //每臺主機最大的請求數量
    private @Nullable Runnable idleCallback;

    /** Executes calls. Created lazily. */
    private @Nullable ExecutorService executorService; //線程池

    /** Ready async calls in the order they'll be run. */
    private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();

    /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
    private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();

    /** Running synchronous calls. Includes canceled calls that haven't finished yet. */
    private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();

    /** 這個線程池沒有核心線程,線程數量沒有限制,空閒60s就會回收*/
    public synchronized ExecutorService executorService() {
        if (executorService == null) {
          executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
              new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
        }
        return executorService;
    }
}

另外還有一個線程池 executorService ,這個線程池跟Android中的CachedThreadPool非常類似,這種類型的線程池,適用於大量的耗時較短的異步任務。下一篇文章 將對OkHttp框架中的線程池做一個總結。

接下來接着看Request的構造,這個例子Request比較簡單,指定了請求方式 GET 和請求 url

public static class Builder {
    HttpUrl url;
    String method;
    Headers.Builder headers;
    RequestBody body;
    Object tag;

    public Builder() {
        this.method = "GET";
        this.headers = new Headers.Builder();
    }

    public Builder url(HttpUrl url) {
        if (url == null) throw new NullPointerException("url == null");
        this.url = url;
        return this;
    }
    public Request build() {
        if (url == null) throw new IllegalStateException("url == null");
        return new Request(this);
    }
    ...
}

緊接着通過 OkHttpClientRequest 構造一個 Call對象,它的實現是RealCall

public Call newCall(Request request) {
    return RealCall.newRealCall(this, request, false /* for web socket */);
}

static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket){
    // Safely publish the Call instance to the EventListener.
    RealCall call = new RealCall(client, originalRequest, forWebSocket);
    call.eventListener = client.eventListenerFactory().create(call);
    return call;
}

private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    this.client = client;
    this.originalRequest = originalRequest;
    this.forWebSocket = forWebSocket;
    this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
}

可以看到在 RealCall 的構造方法中創建了一個RetryAndFollowUpInterceptor,用於處理請求錯誤和重定向等,這是 Okhttp 框架的精髓 interceptor chain 中的一環,默認情況下也是第一個攔截器,除非調用 OkHttpClient.Builder#addInterceptor(Interceptor) 來添加全局的攔截器。關於攔截器鏈的順序參見 RealCall#getResponseWithInterceptorChain() 方法。

RealCall#enqueue(Callback)

public void enqueue(Callback responseCallback) {
    synchronized (this) {
        //每個請求只能之執行一次
        if (executed) throw new IllegalStateException("Already Executed");
        executed = true;
    }
    captureCallStackTrace();
    eventListener.callStart(this);
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
}

可以看到,一個 Call 只能執行一次,否則會拋異常,這裏創建了一個 AsyncCall 並將Callback傳入,接着再交給任務分發器 Dispatcher 來進一步處理。

synchronized void enqueue(AsyncCall call) {
    //正在執行的任務數量小於最大值(64),並且此任務所屬主機的正在執行任務小於最大值(5)
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost)     {
        runningAsyncCalls.add(call);
        executorService().execute(call);
    } else {
        readyAsyncCalls.add(call);
    }
}

Dispatcher#enqueue()方法的策略可以看出,對於請求的入隊做了一些限制,若正在執行的請求數量小於最大值(默認64),並且此請求所屬主機的正在執行任務小於最大值(默認5),就加入正在運行的隊列並通過線程池來執行該任務,否則加入準備執行隊列中。

  • 流程圖

現在回頭看看 AsyncCall ,它繼承自 NamedRunnable,而 NamedRunnable實現了 Runnable 接口,它的作用有2個:
① 採用模板方法的設計模式,讓子類將具體的操作放在 execute()方法中;
② 給線程指定一個名字,比如傳入模塊名稱,方便監控線程的活動狀態;

public abstract class NamedRunnable implements Runnable {
    protected final String name;

    public NamedRunnable(String format, Object... args) {
        this.name = Util.format(format, args);
    }

    @Override public final void run() {
        String oldName = Thread.currentThread().getName();
        Thread.currentThread().setName(name);
        try {
            //採用模板方法讓子類將具體的操作放到此execute()方法
            execute();
        } finally {
            Thread.currentThread().setName(oldName);
        }
    }

    protected abstract void execute();
}
final class AsyncCall extends NamedRunnable {
    //省略...
   @Override protected void execute() {
        boolean signalledCallback = false;
        try {
            //調用 getResponseWithInterceptorChain()獲得響應內容
            Response response = getResponseWithInterceptorChain(); //①
            if (retryAndFollowUpInterceptor.isCanceled()) {
                //這個標記爲主要是避免異常時2次回調
                signalledCallback = true;
                //回調Callback告知失敗
                responseCallback.onFailure(RealCall.this, new IOException("Canceled")); 
            } else {
                signalledCallback = true;
                //回調Callback,將響應內容傳回去
                responseCallback.onResponse(RealCall.this, response);
            }
        } catch (IOException e) {
            if (signalledCallback) {
                // Do not signal the callback twice!
                Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
            } else {
                eventListener.callFailed(RealCall.this, e);
                responseCallback.onFailure(RealCall.this, e);
            }
        } finally {
            //不管請求成功與否,都進行finished()操作
            client.dispatcher().finished(this);//②
        }
    }
}

先看註釋②的行finally塊中執行的 client.dispatcher().finished(this)

void finished(AsyncCall call) {
    finished(runningAsyncCalls, call, true);
}

private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
    int runningCallsCount;
    Runnable idleCallback;
    synchronized (this) {
        //從正在執行的隊列中將其移除
        if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
        if (promoteCalls) promoteCalls(); //推動下一個任務的執行
        runningCallsCount = runningCallsCount();//同步+異步的正在執行任務數量
        idleCallback = this.idleCallback;
    }
    //如果沒有正在執行的任務,且idleCallback不爲null,則回調通知空閒了
    if (runningCallsCount == 0 && idleCallback != null) {
        idleCallback.run();
    }
}

其中promoteCalls()爲推動下一個任務執行,其實它做的也很簡單,就是在條件滿足的情況下,將 readyAsyncCalls 中的任務移動到 runningAsyncCalls中,並交給線程池來執行,以下是它的實現。

private void promoteCalls() {
    if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
    if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.

    //若條件允許,將readyAsyncCalls中的任務移動到runningAsyncCalls中,並交給線程池執行
    for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
        AsyncCall call = i.next();

        if (runningCallsForHost(call) < maxRequestsPerHost) {
            i.remove();
            runningAsyncCalls.add(call);
            executorService().execute(call);
        }
        //當runningAsyncCalls滿了,直接退出迭代
        if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
    }
}

接下來就回到註釋①處的響應內容的獲取 getResponseWithInterceptorChain()

Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>(); //這是一個List,是有序的
    interceptors.addAll(client.interceptors());//首先添加的是用戶添加的全局攔截器
    interceptors.add(retryAndFollowUpInterceptor); //錯誤、重定向攔截器
    //橋接攔截器,橋接應用層與網絡層,添加必要的頭、
    interceptors.add(new BridgeInterceptor(client.cookieJar())); 
    //緩存處理,Last-Modified、ETag、DiskLruCache等
    interceptors.add(new CacheInterceptor(client.internalCache())); 
    //連接攔截器
    interceptors.add(new ConnectInterceptor(client));
    //從這就知道,通過okHttpClient.Builder#addNetworkInterceptor()傳進來的攔截器只對非網頁的請求生效
    if (!forWebSocket) {
        interceptors.addAll(client.networkInterceptors());
    }
    //真正訪問服務器的攔截器
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
}

可以看這塊重點就是 interceptors 這個集合,首先將前面的 client.interceptors() 全部加入其中,還有在創建 RealCall時的 retryAndFollowUpInterceptor加入其中,接着還創建並添加了BridgeInterceptorCacheInterceptorConnectInterceptorCallServerInterceptor,最後通過RealInterceptorChain#proceed(Request)來執行整個 interceptor chain,可見把這個攔截器鏈搞清楚,整體流程也就明朗了。

RealInterceptorChain#proceed()

public Response proceed(Request request) throws IOException {
    return proceed(request, streamAllocation, httpCodec, connection);
}

public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
    RealConnection connection) throws IOException {
    //省略異常處理...

    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
        connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
        writeTimeout);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);

    //省略異常處理...
    return response;
}

從這段實現可以看出,是按照添加到 interceptors 集合的順序,逐個往下調用攔截器的intercept()方法,所以在前面的攔截器會先被調用。這個例子中自然就是 RetryAndFollowUpInterceptor 了。

public Response intercept(Chain chain) throws IOException {
    Request request = chain.request();
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Call call = realChain.call();
    EventListener eventListener = realChain.eventListener();
    //創建一個StreamAllocation
    StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
        createAddress(request.url()), call, eventListener, callStackTrace);
    this.streamAllocation = streamAllocation;

    //統計重定向次數,不能大於20
    int followUpCount = 0; 
    Response priorResponse = null;
    while (true) {
        if (canceled) {
            streamAllocation.release();
            throw new IOException("Canceled");
        }

        Response response;
        boolean releaseConnection = true;
        try {
            //調用下一個interceptor的來獲得響應內容
            response = realChain.proceed(request, streamAllocation, null, null);
            releaseConnection = false;
        } catch (RouteException e) {
            // The attempt to connect via a route failed. The request will not have been sent.
            if (!recover(e.getLastConnectException(), streamAllocation, false, request)) {
                throw e.getLastConnectException();
            }
            releaseConnection = false;
            continue;
        } catch (IOException e) {
            // An attempt to communicate with a server failed. The request may have been sent.
            boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
            if (!recover(e, streamAllocation, requestSendStarted, request)) throw e;
            releaseConnection = false;
            continue;
        } finally {
            // We're throwing an unchecked exception. Release any resources.
            if (releaseConnection) {
                streamAllocation.streamFailed(null);
                streamAllocation.release();
            }
        }

        // Attach the prior response if it exists. Such responses never have a body.
        if (priorResponse != null) {
            response = response.newBuilder()
                .priorResponse(priorResponse.newBuilder()
                        .body(null)
                        .build())
                .build();
        }

        //重定向處理    
        Request followUp = followUpRequest(response, streamAllocation.route());

        if (followUp == null) {
            if (!forWebSocket) {
                streamAllocation.release();
            }
            return response;
        }

        closeQuietly(response.body());

        if (++followUpCount > MAX_FOLLOW_UPS) {
            streamAllocation.release();
            throw new ProtocolException("Too many follow-up requests: " + followUpCount);
        }

        if (followUp.body() instanceof UnrepeatableRequestBody) {
            streamAllocation.release();
            throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
        }

        if (!sameConnection(response, followUp.url())) {
            streamAllocation.release();
            streamAllocation = new StreamAllocation(client.connectionPool(),
            createAddress(followUp.url()), call, eventListener, callStackTrace);
            this.streamAllocation = streamAllocation;
        } else if (streamAllocation.codec() != null) {
            throw new IllegalStateException("Closing the body of " + response
                + " didn't close its backing stream. Bad interceptor?");
        }

        request = followUp;
        priorResponse = response;
    }
}

這個攔截器就如同它的名字retry and followUp,主要負責錯誤處理和重定向等問題,比如路由錯誤、IO異常等。

接下來就到了BridgeInterceptor#intercept(),在這個攔截器中,添加了必要請求頭信息,gzip處理等。

public Response intercept(Chain chain) throws IOException {
    Request userRequest = chain.request();
    Request.Builder requestBuilder = userRequest.newBuilder();

    //從這開始給請求添加了一些請求頭信息
    RequestBody body = userRequest.body();
    if (body != null) {
        MediaType contentType = body.contentType();
        if (contentType != null) {
            requestBuilder.header("Content-Type", contentType.toString());
        }

        long contentLength = body.contentLength();
        if (contentLength != -1) {
            requestBuilder.header("Content-Length", Long.toString(contentLength));
            requestBuilder.removeHeader("Transfer-Encoding");
        } else {
            requestBuilder.header("Transfer-Encoding", "chunked");
            requestBuilder.removeHeader("Content-Length");
        }
    }

    if (userRequest.header("Host") == null) {
        requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }

    if (userRequest.header("Connection") == null) {
        requestBuilder.header("Connection", "Keep-Alive");
    }

    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
    // the transfer stream.
    boolean transparentGzip = false;
    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
        transparentGzip = true;
        requestBuilder.header("Accept-Encoding", "gzip");
    }

    List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
    if (!cookies.isEmpty()) {
        requestBuilder.header("Cookie", cookieHeader(cookies));
    }

    if (userRequest.header("User-Agent") == null) {
        requestBuilder.header("User-Agent", Version.userAgent());
    }

    Response networkResponse = chain.proceed(requestBuilder.build());

    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());

    Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);

    if (transparentGzip
          && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
          && HttpHeaders.hasBody(networkResponse)) {
        GzipSource responseBody = new GzipSource(networkResponse.body().source());
        Headers strippedHeaders = networkResponse.headers().newBuilder()
            .removeAll("Content-Encoding")
            .removeAll("Content-Length")
            .build();
        responseBuilder.headers(strippedHeaders);
        String contentType = networkResponse.header("Content-Type");
        responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
    }

    return responseBuilder.build();
}

這個攔截器處理請求信息、cookie、gzip等,接着往下是 CacheInterceptor

public Response intercept(Chain chain) throws IOException {
    Response cacheCandidate = cache != null
        ? cache.get(chain.request())
        : null;

    long now = System.currentTimeMillis();

    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse;

    if (cache != null) {
        cache.trackResponse(strategy);
    }

    if (cacheCandidate != null && cacheResponse == null) {
        closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
    } 

    // If we're forbidden from using the network and the cache is insufficient, fail.
    if (networkRequest == null && cacheResponse == null) {
        return new Response.Builder()
            .request(chain.request())
            .protocol(Protocol.HTTP_1_1)
            .code(504)
            .message("Unsatisfiable Request (only-if-cached)")
            .body(Util.EMPTY_RESPONSE)
            .sentRequestAtMillis(-1L)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
    }

    // If we don't need the network, we're done.
    if (networkRequest == null) {
        return cacheResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .build();
    }

    Response networkResponse = null;
    try {
        //調用下一個攔截器進行網絡請求    
        networkResponse = chain.proceed(networkRequest);
    } finally {
        // If we're crashing on I/O or otherwise, don't leak the cache body.
        if (networkResponse == null && cacheCandidate != null) {
            closeQuietly(cacheCandidate.body());
        }
    }

    // If we have a cache response too, then we're doing a conditional get.
    if (cacheResponse != null) {
        if (networkResponse.code() == HTTP_NOT_MODIFIED) {
            Response response = cacheResponse.newBuilder()
                .headers(combine(cacheResponse.headers(), networkResponse.headers()))
                .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
                .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
                .cacheResponse(stripBody(cacheResponse))
                .networkResponse(stripBody(networkResponse))
                .build();
            networkResponse.body().close();

            // Update the cache after combining headers but before stripping the
            // Content-Encoding header (as performed by initContentStream()).
            cache.trackConditionalCacheHit();
            cache.update(cacheResponse, response);
            return response;
        } else {
            closeQuietly(cacheResponse.body());
        }
    }

    Response response = networkResponse.newBuilder()
        .cacheResponse(stripBody(cacheResponse))
        .networkResponse(stripBody(networkResponse))
        .build();

    if (cache != null) {
        if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
            // Offer this request to the cache.
            CacheRequest cacheRequest = cache.put(response);
            return cacheWritingResponse(cacheRequest, response);
        }

        if (HttpMethod.invalidatesCache(networkRequest.method())) {
            try {
                cache.remove(networkRequest);
            } catch (IOException ignored) {
                // The cache cannot be written.
            }
        }
    }

    return response;
}

這個攔截器主要工作是做做緩存處理,如果有有緩存並且緩存可用,那就使用緩存,否則進行調用下一個攔截器 ConnectionInterceptor 進行網絡請求,並將響應內容緩存。

public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();
    StreamAllocation streamAllocation = realChain.streamAllocation();

    // We need the network to satisfy this request. Possibly for validating a conditional GET.
    boolean doExtensiveHealthChecks = !request.method().equals("GET");
    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
    RealConnection connection = streamAllocation.connection();

    return realChain.proceed(request, streamAllocation, httpCodec, connection);
}

這個攔截器主要是打開一個到目標服務器的 connection 並調用下一個攔截器 CallServerInterceptor,這是攔截器鏈最後一個攔截器,它向服務器發起真正的網絡請求。

public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    HttpCodec httpCodec = realChain.httpStream();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    RealConnection connection = (RealConnection) realChain.connection();
    Request request = realChain.request();

    long sentRequestMillis = System.currentTimeMillis();

    realChain.eventListener().requestHeadersStart(realChain.call());
    httpCodec.writeRequestHeaders(request);
    realChain.eventListener().requestHeadersEnd(realChain.call(), request);

    Response.Builder responseBuilder = null;
    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
        // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
        // Continue" response before transmitting the request body. If we don't get that, return
        // what we did get (such as a 4xx response) without ever transmitting the request body.
        if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
            httpCodec.flushRequest();
            realChain.eventListener().responseHeadersStart(realChain.call());
            responseBuilder = httpCodec.readResponseHeaders(true);
        }

        if (responseBuilder == null) {
            // Write the request body if the "Expect: 100-continue" expectation was met.
            realChain.eventListener().requestBodyStart(realChain.call());
            long contentLength = request.body().contentLength();
            CountingSink requestBodyOut =
                new CountingSink(httpCodec.createRequestBody(request, contentLength));
            BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);

            request.body().writeTo(bufferedRequestBody);
            bufferedRequestBody.close();
            realChain.eventListener()
                .requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
        } else if (!connection.isMultiplexed()) {
            // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
            // from being reused. Otherwise we're still obligated to transmit the request body to
            // leave the connection in a consistent state.
            streamAllocation.noNewStreams();
        }
    }

    httpCodec.finishRequest();

    if (responseBuilder == null) {
        realChain.eventListener().responseHeadersStart(realChain.call());
        responseBuilder = httpCodec.readResponseHeaders(false);
    }

    Response response = responseBuilder
        .request(request)
        .handshake(streamAllocation.connection().handshake())
        .sentRequestAtMillis(sentRequestMillis)
        .receivedResponseAtMillis(System.currentTimeMillis())
        .build();

    int code = response.code();
    if (code == 100) {
        // server sent a 100-continue even though we did not request one.
        // try again to read the actual response
        responseBuilder = httpCodec.readResponseHeaders(false);

        response = responseBuilder
            .request(request)
            .handshake(streamAllocation.connection().handshake())
            .sentRequestAtMillis(sentRequestMillis)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();

        code = response.code();
    }

    realChain.eventListener()
        .responseHeadersEnd(realChain.call(), response);

    if (forWebSocket && code == 101) {
        // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
        response = response.newBuilder()
            .body(Util.EMPTY_RESPONSE)
            .build();
    } else {
        response = response.newBuilder()
            .body(httpCodec.openResponseBody(response))
            .build();
    }

    if ("close".equalsIgnoreCase(response.request().header("Connection"))
        || "close".equalsIgnoreCase(response.header("Connection"))) {
            streamAllocation.noNewStreams();
    }

    if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
        throw new ProtocolException(
            "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
    }

    return response;
}

從上面的請求流程圖可以看出,OkHttp的攔截器鏈可謂是其整個框架的精髓,用戶可傳入的 interceptor 分爲兩類:
①一類是全局的 interceptor,該類 interceptor 在整個攔截器鏈中最早被調用,通過 OkHttpClient.Builder#addInterceptor(Interceptor) 傳入;
②另外一類是非網頁請求的 interceptor ,這類攔截器只會在非網頁請求中被調用,並且是在組裝完請求之後,真正發起網絡請求前被調用,所有的 interceptor 被保存在 List<Interceptor> interceptors 集合中,按照添加順序來逐個調用,具體可參考 RealCall#getResponseWithInterceptorChain() 方法。通過 OkHttpClient.Builder#addNetworkInterceptor(Interceptor) 傳入;
在這裏插入圖片描述

相關閱讀

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章