【圖像處理】 -041 MTCNN+DCNN人臉檢測

【圖像處理】 -041 MTCNN+DCNN人臉檢測

1 簡介

  相比於R-CNN系列通用檢測方法,本文更加針對人臉檢測這一專門的任務,速度和精度都有足夠的提升。R-CNN,Fast R-CNN,FasterR-CNN這一系列的方法不是一篇博客能講清楚的,有興趣可以找相關論文閱讀。類似於TCDCN,本文提出了一種Multi-task的人臉檢測框架,將人臉檢測和人臉特徵點檢測同時進行。論文使用3個CNN級聯的方式,和Viola-Jones類似,實現了coarse-to-fine的算法結構。

  當給定一張照片的時候,將其縮放到不同尺度形成圖像金字塔,以達到尺度不變。

  • Stage 1:使用P-Net是一個全卷積網絡,用來生成候選窗和邊框迴歸向量(bounding box regression vectors)。使用Bounding box regression的方法來校正這些候選窗,使用非極大值抑制(NMS)合併重疊的候選框。全卷積網絡和Faster R-CNN中的RPN一脈相承。

  • Stage 2:使用N-Net改善候選窗。將通過P-Net的候選窗輸入R-Net中,拒絕掉大部分false的窗口,繼續使用Bounding box regression和NMS合併。

  • Stage 3:最後使用O-Net輸出最終的人臉框和特徵點位置。和第二步類似,但是不同的是生成5個特徵點位置。

2 C++實現

#include <opencv2/opencv.hpp>
#include "mtcnn.h"

#include "HighPerformanceTimer.hpp"
#include <fstream>
using namespace cv;

#define MAXFACEOPEN 0 //設置是否開關最大人臉調試,1爲開,其它爲關


//讀取待檢測文件列表
std::vector<std::string> ReadImgList(std::string& imglistfilename)
{
    std::vector<std::string> imgs;
    std::ifstream imglistfile(imglistfilename, std::ifstream::in);
    std::string line;
    while (getline(imglistfile, line))//按行讀取
    {
        imgs.push_back(line);
    }
    return imgs;
}

int main(int argc, char** argv) {

    if (argc < 3)
    {
        std::cout << "Please use this exe like this:" << std::endl;
        std::cout << "OpenCV_Harrx.exe imglist.txt outputpath" << std::endl;
        system("pause");
    }
    std::string imglistfile(argv[1]);
    std::string outputpath(argv[2]);
    std::vector<std::string> imgs = ReadImgList(imglistfile);

    char *model_path = "./models";
    MTCNN mtcnn(model_path);
    char* pTname = (char*)"timer";
    CHighPerformanceTimer* pTimer = new CHighPerformanceTimer(pTname, 6, true);
    std::ofstream of(outputpath, std::ofstream::out);
    for (int i = 0; i < imgs.size(); i++)
    {
        cv::Mat image = cv::imread((char*)imgs[i].c_str());
        pTimer->Reset();
        ncnn::Mat ncnn_img = ncnn::Mat::from_pixels(image.data, ncnn::Mat::PIXEL_BGR2RGB, image.cols, image.rows);
        std::vector<Bbox> finalBbox;
#if(MAXFACEOPEN==1)
        mtcnn.detectMaxFace(ncnn_img, finalBbox);
#else
        mtcnn.detect(ncnn_img, finalBbox);
#endif
        double dt = pTimer->GetTime();



        const int num_box = finalBbox.size();
        std::vector<cv::Rect> bbox;
        bbox.resize(num_box);
        of << imgs[i] << " " << dt << "s " << bbox.size() << " ";
        std::cout << imgs[i] << " " << dt << "s " << bbox.size() << " ";
        for (int i = 0; i < num_box; i++) {
            bbox[i] = cv::Rect(finalBbox[i].x1, finalBbox[i].y1, finalBbox[i].x2 - finalBbox[i].x1 + 1, finalBbox[i].y2 - finalBbox[i].y1 + 1);

            of << bbox[i];
            std::cout << bbox[i];
            for (int j = 0; j < 5; j = j + 1)
            {
                cv::circle(image, cv::Point(finalBbox[i].ppoint[j], finalBbox[i].ppoint[j + 5]), 2, CV_RGB(0, 255, 0), cv::FILLED);
            }
        }
        for (vector<cv::Rect>::iterator it = bbox.begin(); it != bbox.end(); it++)
        {
            rectangle(image, (*it), Scalar(0, 0, 255), 2, 8, 0);
        }
        of << std::endl;
        std::cout << std::endl;
        imshow("face_detection", image);
        cv::waitKey(0);
    }
    of.close();

    return 0;
}

#pragma once

#ifndef __MTCNN_NCNN_H__
#define __MTCNN_NCNN_H__
#include "net.h"
//#include <opencv2/opencv.hpp>
#include <string>
#include <vector>
#include <time.h>
#include <algorithm>
#include <map>
#include <iostream>
using namespace std;
//using namespace cv;
struct Bbox
{
    float score;
    int x1;
    int y1;
    int x2;
    int y2;
    float area;
    float ppoint[10];
    float regreCoord[4];
};


class MTCNN {

public:
    MTCNN(const string &model_path);
    MTCNN(const std::vector<std::string> param_files, const std::vector<std::string> bin_files);
    ~MTCNN();

    void SetMinFace(int minSize);
    void detect(ncnn::Mat& img_, std::vector<Bbox>& finalBbox);
    void detectMaxFace(ncnn::Mat& img_, std::vector<Bbox>& finalBbox);
    //  void detection(const cv::Mat& img, std::vector<cv::Rect>& rectangles);
private:
    void generateBbox(ncnn::Mat score, ncnn::Mat location, vector<Bbox>& boundingBox_, float scale);
    void nmsTwoBoxs(vector<Bbox> &boundingBox_, vector<Bbox> &previousBox_, const float overlap_threshold, string modelname = "Union");
    void nms(vector<Bbox> &boundingBox_, const float overlap_threshold, string modelname = "Union");
    void refine(vector<Bbox> &vecBbox, const int &height, const int &width, bool square);
    void extractMaxFace(vector<Bbox> &boundingBox_);

    void PNet(float scale);
    void PNet();
    void RNet();
    void ONet();

    ncnn::Net Pnet, Rnet, Onet;
    ncnn::Mat img;

    const float nms_threshold[3] = { 0.5f, 0.7f, 0.7f };
    const float mean_vals[3] = { 127.5, 127.5, 127.5 };
    const float norm_vals[3] = { 0.0078125, 0.0078125, 0.0078125 };
    const int MIN_DET_SIZE = 12;
    std::vector<Bbox> firstPreviousBbox_, secondPreviousBbox_, thirdPrevioussBbox_;
    std::vector<Bbox> firstBbox_, secondBbox_, thirdBbox_;
    int img_w, img_h;

private://部分可調參數
    const float threshold[3] = { 0.8f, 0.8f, 0.6f };
    int minsize = 40;
    const float pre_facetor = 0.709f;

};


#endif //__MTCNN_NCNN_H__


#include "mtcnn.h"

bool cmpScore(Bbox lsh, Bbox rsh) {
    if (lsh.score < rsh.score)
        return true;
    else
        return false;
}

bool cmpArea(Bbox lsh, Bbox rsh) {
    if (lsh.area < rsh.area)
        return false;
    else
        return true;
}

//MTCNN::MTCNN(){}
MTCNN::MTCNN(const string &model_path) {

    std::vector<std::string> param_files = {
        model_path + "/det1.param",
        model_path + "/det2.param",
        model_path + "/det3.param"
    };

    std::vector<std::string> bin_files = {
        model_path + "/det1.bin",
        model_path + "/det2.bin",
        model_path + "/det3.bin"
    };

    Pnet.load_param(param_files[0].data());
    Pnet.load_model(bin_files[0].data());
    Rnet.load_param(param_files[1].data());
    Rnet.load_model(bin_files[1].data());
    Onet.load_param(param_files[2].data());
    Onet.load_model(bin_files[2].data());
}

MTCNN::MTCNN(const std::vector<std::string> param_files, const std::vector<std::string> bin_files) {
    Pnet.load_param(param_files[0].data());
    Pnet.load_model(bin_files[0].data());
    Rnet.load_param(param_files[1].data());
    Rnet.load_model(bin_files[1].data());
    Onet.load_param(param_files[2].data());
    Onet.load_model(bin_files[2].data());
}


MTCNN::~MTCNN() {
    Pnet.clear();
    Rnet.clear();
    Onet.clear();
}
void MTCNN::SetMinFace(int minSize) {
    minsize = minSize;
}
void MTCNN::generateBbox(ncnn::Mat score, ncnn::Mat location, std::vector<Bbox>& boundingBox_, float scale) {
    const int stride = 2;
    const int cellsize = 12;
    //score p
    float *p = score.channel(1);//score.data + score.cstep;
    //float *plocal = location.data;
    Bbox bbox;
    float inv_scale = 1.0f / scale;
    for (int row = 0; row < score.h; row++) {
        for (int col = 0; col < score.w; col++) {
            if (*p > threshold[0]) {
                bbox.score = *p;
                bbox.x1 = round((stride*col + 1)*inv_scale);
                bbox.y1 = round((stride*row + 1)*inv_scale);
                bbox.x2 = round((stride*col + 1 + cellsize)*inv_scale);
                bbox.y2 = round((stride*row + 1 + cellsize)*inv_scale);
                bbox.area = (bbox.x2 - bbox.x1) * (bbox.y2 - bbox.y1);
                const int index = row * score.w + col;
                for (int channel = 0; channel < 4; channel++) {
                    bbox.regreCoord[channel] = location.channel(channel)[index];
                }
                boundingBox_.push_back(bbox);
            }
            p++;
            //plocal++;
        }
    }
}

void MTCNN::nmsTwoBoxs(vector<Bbox>& boundingBox_, vector<Bbox>& previousBox_, const float overlap_threshold, string modelname)
{
    if (boundingBox_.empty()) {
        return;
    }
    sort(boundingBox_.begin(), boundingBox_.end(), cmpScore);
    float IOU = 0;
    float maxX = 0;
    float maxY = 0;
    float minX = 0;
    float minY = 0;
    //std::cout << boundingBox_.size() << " ";
    for (std::vector<Bbox>::iterator ity = previousBox_.begin(); ity != previousBox_.end(); ity++) {
        for (std::vector<Bbox>::iterator itx = boundingBox_.begin(); itx != boundingBox_.end();) {
            int i = itx - boundingBox_.begin();
            int j = ity - previousBox_.begin();
            maxX = max(boundingBox_.at(i).x1, previousBox_.at(j).x1);
            maxY = max(boundingBox_.at(i).y1, previousBox_.at(j).y1);
            minX = min(boundingBox_.at(i).x2, previousBox_.at(j).x2);
            minY = min(boundingBox_.at(i).y2, previousBox_.at(j).y2);
            //maxX1 and maxY1 reuse
            maxX = ((minX - maxX + 1) > 0) ? (minX - maxX + 1) : 0;
            maxY = ((minY - maxY + 1) > 0) ? (minY - maxY + 1) : 0;
            //IOU reuse for the area of two bbox
            IOU = maxX * maxY;
            if (!modelname.compare("Union"))
                IOU = IOU / (boundingBox_.at(i).area + previousBox_.at(j).area - IOU);
            else if (!modelname.compare("Min")) {
                IOU = IOU / ((boundingBox_.at(i).area < previousBox_.at(j).area) ? boundingBox_.at(i).area : previousBox_.at(j).area);
            }
            if (IOU > overlap_threshold&&boundingBox_.at(i).score > previousBox_.at(j).score) {
                //if (IOU > overlap_threshold) {
                itx = boundingBox_.erase(itx);
            }
            else {
                itx++;
            }
        }
    }
    //std::cout << boundingBox_.size() << std::endl;
}

void MTCNN::nms(std::vector<Bbox> &boundingBox_, const float overlap_threshold, string modelname) {
    if (boundingBox_.empty()) {
        return;
    }
    sort(boundingBox_.begin(), boundingBox_.end(), cmpScore);
    float IOU = 0;
    float maxX = 0;
    float maxY = 0;
    float minX = 0;
    float minY = 0;
    std::vector<int> vPick;
    int nPick = 0;
    std::multimap<float, int> vScores;
    const int num_boxes = boundingBox_.size();
    vPick.resize(num_boxes);
    for (int i = 0; i < num_boxes; ++i) {
        vScores.insert(std::pair<float, int>(boundingBox_[i].score, i));
    }
    while (vScores.size() > 0) {
        int last = vScores.rbegin()->second;
        vPick[nPick] = last;
        nPick += 1;
        for (std::multimap<float, int>::iterator it = vScores.begin(); it != vScores.end();) {
            int it_idx = it->second;
            maxX = max(boundingBox_.at(it_idx).x1, boundingBox_.at(last).x1);
            maxY = max(boundingBox_.at(it_idx).y1, boundingBox_.at(last).y1);
            minX = min(boundingBox_.at(it_idx).x2, boundingBox_.at(last).x2);
            minY = min(boundingBox_.at(it_idx).y2, boundingBox_.at(last).y2);
            //maxX1 and maxY1 reuse
            maxX = ((minX - maxX + 1) > 0) ? (minX - maxX + 1) : 0;
            maxY = ((minY - maxY + 1) > 0) ? (minY - maxY + 1) : 0;
            //IOU reuse for the area of two bbox
            IOU = maxX * maxY;
            if (!modelname.compare("Union"))
                IOU = IOU / (boundingBox_.at(it_idx).area + boundingBox_.at(last).area - IOU);
            else if (!modelname.compare("Min")) {
                IOU = IOU / ((boundingBox_.at(it_idx).area < boundingBox_.at(last).area) ? boundingBox_.at(it_idx).area : boundingBox_.at(last).area);
            }
            if (IOU > overlap_threshold) {
                it = vScores.erase(it);
            }
            else {
                it++;
            }
        }
    }

    vPick.resize(nPick);
    std::vector<Bbox> tmp_;
    tmp_.resize(nPick);
    for (int i = 0; i < nPick; i++) {
        tmp_[i] = boundingBox_[vPick[i]];
    }
    boundingBox_ = tmp_;
}
void MTCNN::refine(vector<Bbox> &vecBbox, const int &height, const int &width, bool square) {
    if (vecBbox.empty()) {
        cout << "Bbox is empty!!" << endl;
        return;
    }
    float bbw = 0, bbh = 0, maxSide = 0;
    float h = 0, w = 0;
    float x1 = 0, y1 = 0, x2 = 0, y2 = 0;
    for (vector<Bbox>::iterator it = vecBbox.begin(); it != vecBbox.end(); it++) {
        bbw = (*it).x2 - (*it).x1 + 1;
        bbh = (*it).y2 - (*it).y1 + 1;
        x1 = (*it).x1 + (*it).regreCoord[0] * bbw;
        y1 = (*it).y1 + (*it).regreCoord[1] * bbh;
        x2 = (*it).x2 + (*it).regreCoord[2] * bbw;
        y2 = (*it).y2 + (*it).regreCoord[3] * bbh;



        if (square) {
            w = x2 - x1 + 1;
            h = y2 - y1 + 1;
            maxSide = (h > w) ? h : w;
            x1 = x1 + w * 0.5 - maxSide * 0.5;
            y1 = y1 + h * 0.5 - maxSide * 0.5;
            (*it).x2 = round(x1 + maxSide - 1);
            (*it).y2 = round(y1 + maxSide - 1);
            (*it).x1 = round(x1);
            (*it).y1 = round(y1);
        }

        //boundary check
        if ((*it).x1 < 0)(*it).x1 = 0;
        if ((*it).y1 < 0)(*it).y1 = 0;
        if ((*it).x2 > width)(*it).x2 = width - 1;
        if ((*it).y2 > height)(*it).y2 = height - 1;

        it->area = (it->x2 - it->x1)*(it->y2 - it->y1);
    }
}

void MTCNN::extractMaxFace(vector<Bbox>& boundingBox_)
{
    if (boundingBox_.empty()) {
        return;
    }
    sort(boundingBox_.begin(), boundingBox_.end(), cmpArea);
    for (std::vector<Bbox>::iterator itx = boundingBox_.begin() + 1; itx != boundingBox_.end();) {
        itx = boundingBox_.erase(itx);
    }
}

void MTCNN::PNet(float scale)
{
    //first stage
    int hs = (int)ceil(img_h*scale);
    int ws = (int)ceil(img_w*scale);
    ncnn::Mat in;
    resize_bilinear(img, in, ws, hs);
    ncnn::Extractor ex = Pnet.create_extractor();
    ex.set_light_mode(true);
    //sex.set_num_threads(4);
    ex.input("data", in);
    ncnn::Mat score_, location_;
    ex.extract("prob1", score_);
    ex.extract("conv4-2", location_);
    std::vector<Bbox> boundingBox_;

    generateBbox(score_, location_, boundingBox_, scale);
    nms(boundingBox_, nms_threshold[0]);

    firstBbox_.insert(firstBbox_.end(), boundingBox_.begin(), boundingBox_.end());
    boundingBox_.clear();
}

void MTCNN::PNet() {
    firstBbox_.clear();
    float minl = img_w < img_h ? img_w : img_h;
    float m = (float)MIN_DET_SIZE / minsize;
    minl *= m;
    float factor = pre_facetor;
    vector<float> scales_;
    while (minl > MIN_DET_SIZE) {
        scales_.push_back(m);
        minl *= factor;
        m = m * factor;
    }
    for (size_t i = 0; i < scales_.size(); i++) {
        int hs = (int)ceil(img_h*scales_[i]);
        int ws = (int)ceil(img_w*scales_[i]);
        ncnn::Mat in;
        resize_bilinear(img, in, ws, hs);
        ncnn::Extractor ex = Pnet.create_extractor();
        //ex.set_num_threads(2);
        ex.set_light_mode(true);
        ex.input("data", in);
        ncnn::Mat score_, location_;
        ex.extract("prob1", score_);
        ex.extract("conv4-2", location_);
        std::vector<Bbox> boundingBox_;
        generateBbox(score_, location_, boundingBox_, scales_[i]);
        nms(boundingBox_, nms_threshold[0]);
        firstBbox_.insert(firstBbox_.end(), boundingBox_.begin(), boundingBox_.end());
        boundingBox_.clear();
    }
}
void MTCNN::RNet() {
    secondBbox_.clear();
    int count = 0;
    for (vector<Bbox>::iterator it = firstBbox_.begin(); it != firstBbox_.end(); it++) {
        ncnn::Mat tempIm;
        copy_cut_border(img, tempIm, (*it).y1, img_h - (*it).y2, (*it).x1, img_w - (*it).x2);
        ncnn::Mat in;
        resize_bilinear(tempIm, in, 24, 24);
        ncnn::Extractor ex = Rnet.create_extractor();
        //ex.set_num_threads(2);
        ex.set_light_mode(true);
        ex.input("data", in);
        ncnn::Mat score, bbox;
        ex.extract("prob1", score);
        ex.extract("conv5-2", bbox);
        if ((float)score[1] > threshold[1]) {
            for (int channel = 0; channel < 4; channel++) {
                it->regreCoord[channel] = (float)bbox[channel];//*(bbox.data+channel*bbox.cstep);
            }
            it->area = (it->x2 - it->x1)*(it->y2 - it->y1);
            it->score = score.channel(1)[0];//*(score.data+score.cstep);
            secondBbox_.push_back(*it);
        }
    }
}
void MTCNN::ONet() {
    thirdBbox_.clear();
    for (vector<Bbox>::iterator it = secondBbox_.begin(); it != secondBbox_.end(); it++) {
        ncnn::Mat tempIm;
        copy_cut_border(img, tempIm, (*it).y1, img_h - (*it).y2, (*it).x1, img_w - (*it).x2);
        ncnn::Mat in;
        resize_bilinear(tempIm, in, 48, 48);
        ncnn::Extractor ex = Onet.create_extractor();
        //ex.set_num_threads(2);
        ex.set_light_mode(true);
        ex.input("data", in);
        ncnn::Mat score, bbox, keyPoint;
        ex.extract("prob1", score);
        ex.extract("conv6-2", bbox);
        ex.extract("conv6-3", keyPoint);
        if ((float)score[1] > threshold[2]) {
            for (int channel = 0; channel < 4; channel++) {
                it->regreCoord[channel] = (float)bbox[channel];
            }
            it->area = (it->x2 - it->x1) * (it->y2 - it->y1);
            it->score = score.channel(1)[0];
            for (int num = 0; num < 5; num++) {
                (it->ppoint)[num] = it->x1 + (it->x2 - it->x1) * keyPoint[num];
                (it->ppoint)[num + 5] = it->y1 + (it->y2 - it->y1) * keyPoint[num + 5];
            }

            thirdBbox_.push_back(*it);
        }
    }
}
void MTCNN::detect(ncnn::Mat& img_, std::vector<Bbox>& finalBbox_) {
    img = img_;
    img_w = img.w;
    img_h = img.h;
    img.substract_mean_normalize(mean_vals, norm_vals);

    PNet();
    //the first stage's nms
    if (firstBbox_.size() < 1) return;
    nms(firstBbox_, nms_threshold[0]);
    refine(firstBbox_, img_h, img_w, true);
    //printf("firstBbox_.size()=%d\n", firstBbox_.size());


    //second stage
    RNet();
    //printf("secondBbox_.size()=%d\n", secondBbox_.size());
    if (secondBbox_.size() < 1) return;
    nms(secondBbox_, nms_threshold[1]);
    refine(secondBbox_, img_h, img_w, true);

    //third stage
    ONet();
    //printf("thirdBbox_.size()=%d\n", thirdBbox_.size());
    if (thirdBbox_.size() < 1) return;
    refine(thirdBbox_, img_h, img_w, true);
    nms(thirdBbox_, nms_threshold[2], "Min");
    finalBbox_ = thirdBbox_;
}


void MTCNN::detectMaxFace(ncnn::Mat& img_, std::vector<Bbox>& finalBbox) {
    firstPreviousBbox_.clear();
    secondPreviousBbox_.clear();
    thirdPrevioussBbox_.clear();
    firstBbox_.clear();
    secondBbox_.clear();
    thirdBbox_.clear();

    //norm
    img = img_;
    img_w = img.w;
    img_h = img.h;
    img.substract_mean_normalize(mean_vals, norm_vals);

    //pyramid size
    float minl = img_w < img_h ? img_w : img_h;
    float m = (float)MIN_DET_SIZE / minsize;
    minl *= m;
    float factor = pre_facetor;
    vector<float> scales_;
    while (minl > MIN_DET_SIZE) {
        scales_.push_back(m);
        minl *= factor;
        m = m * factor;
    }
    sort(scales_.begin(), scales_.end());
    //printf("scales_.size()=%d\n", scales_.size());

    //Change the sampling process.
    for (size_t i = 0; i < scales_.size(); i++)
    {
        //first stage
        PNet(scales_[i]);
        nms(firstBbox_, nms_threshold[0]);
        nmsTwoBoxs(firstBbox_, firstPreviousBbox_, nms_threshold[0]);
        if (firstBbox_.size() < 1) {
            firstBbox_.clear();
            continue;
        }
        firstPreviousBbox_.insert(firstPreviousBbox_.end(), firstBbox_.begin(), firstBbox_.end());
        refine(firstBbox_, img_h, img_w, true);
        //printf("firstBbox_.size()=%d\n", firstBbox_.size());

        //second stage
        RNet();
        nms(secondBbox_, nms_threshold[1]);
        nmsTwoBoxs(secondBbox_, secondPreviousBbox_, nms_threshold[0]);
        secondPreviousBbox_.insert(secondPreviousBbox_.end(), secondBbox_.begin(), secondBbox_.end());
        if (secondBbox_.size() < 1) {
            firstBbox_.clear();
            secondBbox_.clear();
            continue;
        }
        refine(secondBbox_, img_h, img_w, true);
        //printf("secondBbox_.size()=%d\n", secondBbox_.size());

        //third stage
        ONet();
        //printf("thirdBbox_.size()=%d\n", thirdBbox_.size());
        if (thirdBbox_.size() < 1) {
            firstBbox_.clear();
            secondBbox_.clear();
            thirdBbox_.clear();
            continue;
        }
        refine(thirdBbox_, img_h, img_w, true);
        nms(thirdBbox_, nms_threshold[2], "Min");

        if (thirdBbox_.size() > 0) {
            extractMaxFace(thirdBbox_);
            finalBbox = thirdBbox_;//if largest face size is similar,.
            break;
        }
    }

}

3 檢測效果

在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述

4 分析

  • 將人臉檢測與人臉5個特徵點檢測同時進行;
  • 人臉檢測準確率高;
  • 對人臉偏移、傾斜、旋轉、縮放的兼容性強;
  • 運行速度快
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章