linux下SPI驅動開發

一、概述

基於子系統去開發驅動程序已經是linux內核中普遍的做法了。前面寫過基於I2C子系統的驅動開發。本文介紹另外一種常用總線SPI的開發方法。SPI子系統的開發和I2C有很多的相似性,大家可以對比學習。本主題分爲兩個部分敘述,第一部分介紹基於SPI子系統開發的理論框架;第二部分以華清遠見教學平臺FS_S5PC100上的M25P10芯片爲例(內核版本2.6.29),編寫一個SPI驅動程序實例。

 二、SPI總線協議簡介

介紹驅動開發前,需要先熟悉下SPI通訊協議中的幾個關鍵的地方,後面在編寫驅動時,需要考慮相關因素。

SPI總線由MISO(串行數據輸入)、MOSI(串行數據輸出)、SCK(串行移位時鐘)、CS(使能信號)4個信號線組成。如FS_S5PC100上的M25P10芯片接線爲:

        上圖中M25P10D腳爲它的數據輸入腳,Q爲數據輸出腳,C爲時鐘腳。

         SPI常用四種數據傳輸模式,主要差別在於:輸出串行同步時鐘極性(CPOL)和相位(CPHA)可以進行配置。如果CPOL= 0,串行同步時鐘的空閒狀態爲低電平;如果CPOL= 1,串行同步時鐘的空閒狀態爲高電平。如果CPHA= 0,在串行同步時鐘的前沿(上升或下降)數據被採樣;如果CPHA = 1,在串行同步時鐘的後沿(上升或下降)數據被採樣。

      這四種模式中究竟選擇哪種模式取決於設備。如M25P10的手冊中明確它可以支持的兩種模式爲:CPOL=0 CPHA=0  CPOL=1 CPHA=1

 

三、linuxSPI驅動開發

      首先明確SPI驅動層次,如下圖:

   

我們以上面的這個圖爲思路

1  Platform bus

    Platform bus對應的結構是platform_bus_type,這個內核開始就定義好的。我們不需要定義。

2Platform_device

SPI控制器對應platform_device的定義方式,同樣以S5PC100中的SPI控制器爲例,參看arch/arm/plat-s5pc1xx/dev-spi.c文件

structplatform_device s3c_device_spi0 = {

        .name         ="s3c64xx-spi", //名稱,要和Platform_driver匹配

        .id       =0, //0個控制器,S5PC100中有3個控制器

        .num_resources    =ARRAY_SIZE(s5pc1xx_spi0_resource),//佔用資源的種類

        .resource     =s5pc1xx_spi0_resource,//指向資源結構數組的指針

        .dev= {

            .dma_mask       = &spi_dmamask,  //dma尋址範圍     

            .coherent_dma_mask  = DMA_BIT_MASK(32),  //可以通過關閉cache等措施保證一致性的dma尋址範圍

            .platform_data=&s5pc1xx_spi0_pdata,//特殊的平臺數據,參看後文

        },

};

 

static structs3c64xx_spi_cntrlr_infos5pc1xx_spi0_pdata= {

    .cfg_gpio =s5pc1xx_spi_cfg_gpio,  //用於控制器管腳的IO配置

    .fifo_lvl_mask = 0x7f,

    .rx_lvl_offset = 13,

};

 

static int s5pc1xx_spi_cfg_gpio(structplatform_device *pdev)

{

    switch (pdev->id) {

    case 0:

        s3c_gpio_cfgpin(S5PC1XX_GPB(0),S5PC1XX_GPB0_SPI_MISO0);

        s3c_gpio_cfgpin(S5PC1XX_GPB(1),S5PC1XX_GPB1_SPI_CLK0);

        s3c_gpio_cfgpin(S5PC1XX_GPB(2),S5PC1XX_GPB2_SPI_MOSI0);

        s3c_gpio_setpull(S5PC1XX_GPB(0),S3C_GPIO_PULL_UP);

        s3c_gpio_setpull(S5PC1XX_GPB(1),S3C_GPIO_PULL_UP);

        s3c_gpio_setpull(S5PC1XX_GPB(2),S3C_GPIO_PULL_UP);

        break;

 

    case 1:

        s3c_gpio_cfgpin(S5PC1XX_GPB(4),S5PC1XX_GPB4_SPI_MISO1);

        s3c_gpio_cfgpin(S5PC1XX_GPB(5),S5PC1XX_GPB5_SPI_CLK1);

        s3c_gpio_cfgpin(S5PC1XX_GPB(6),S5PC1XX_GPB6_SPI_MOSI1);

        s3c_gpio_setpull(S5PC1XX_GPB(4),S3C_GPIO_PULL_UP);

        s3c_gpio_setpull(S5PC1XX_GPB(5),S3C_GPIO_PULL_UP);

        s3c_gpio_setpull(S5PC1XX_GPB(6),S3C_GPIO_PULL_UP);

        break;

 

    case 2:

        s3c_gpio_cfgpin(S5PC1XX_GPG3(0),S5PC1XX_GPG3_0_SPI_CLK2);

        s3c_gpio_cfgpin(S5PC1XX_GPG3(2),S5PC1XX_GPG3_2_SPI_MISO2);

        s3c_gpio_cfgpin(S5PC1XX_GPG3(3), S5PC1XX_GPG3_3_SPI_MOSI2);

        s3c_gpio_setpull(S5PC1XX_GPG3(0),S3C_GPIO_PULL_UP);

        s3c_gpio_setpull(S5PC1XX_GPG3(2),S3C_GPIO_PULL_UP);

        s3c_gpio_setpull(S5PC1XX_GPG3(3),S3C_GPIO_PULL_UP);

        break;

 

    default:

        dev_err(&pdev->dev, "InvalidSPI Controller number!");

        return -EINVAL;

    }

3Platform_driver

再看platform_driver,參看drivers/spi/spi_s3c64xx.c文件

static structplatform_driver s3c64xx_spi_driver = {

        .driver= {

            .name   = "s3c64xx-spi",  //名稱,和platform_device對應

            .owner= THIS_MODULE,

        },

        .remove= s3c64xx_spi_remove,

        .suspend= s3c64xx_spi_suspend,

        .resume= s3c64xx_spi_resume,

};

 

platform_driver_probe(&s3c64xx_spi_driver,s3c64xx_spi_probe)//註冊s3c64xx_spi_driver

和平臺中註冊的platform_device匹配後,調用s3c64xx_spi_probe。然後根據傳入的platform_device參數,構建一個用於描述SPI控制器的結構體spi_master,並註冊。spi_register_master(master)。後續註冊的spi_device需要選定自己的spi_master,並利用spi_master提供的傳輸功能傳輸spi數據。

   I2C類似,SPI也有一個描述控制器的對象叫spi_master。其主要成員是主機控制器的序號(系統中可能存在多個SPI主機控制器)、片選數量、SPI模式和時鐘設置用到的函數、數據傳輸用到的函數等。

struct spi_master {

    struct device   dev;

    s16 bus_num;  //表示是SPI主機控制器的編號。由平臺代碼決定

    u16 num_chipselect;//控制器支持的片選數量,即能支持多少個spi設備

    int (*setup)(structspi_device *spi);//針對設備設置SPI的工作時鐘及數據傳輸模式等。在spi_add_device函數中調用。

    int (*transfer)(structspi_device *spi,

    struct spi_message *mesg);//實現數據的雙向傳輸,可能會睡眠

    void (*cleanup)(structspi_device *spi);//註銷時調用

};

 

4Spi bus

Spi總線對應的總線類型爲spi_bus_type,在內核的drivers/spi/spi.c中定義

struct bus_typespi_bus_type = {

    .name       ="spi",

    .dev_attrs  =spi_dev_attrs,

    .match      =spi_match_device,

    .uevent     =spi_uevent,

    .suspend    =spi_suspend,

    .resume     =spi_resume,

};

對應的匹配規則是(高版本中的匹配規則會稍有變化,引入了id_table,可以匹配多個spi設備名稱):

static intspi_match_device(struct device *dev, struct device_driver *drv)

{

    const struct spi_device *spi = to_spi_device(dev);

    return strcmp(spi->modalias,drv->name) == 0;

}

5spi_device

下面該講到spi_device的構建與註冊了spi_device對應的含義是掛接在spi總線上的一個設備,所以描述它的時候應該明確它自身的設備特性、傳輸要求、及掛接在哪個總線上。

static structspi_board_info s3c_spi_devs[]__initdata = {

    {

        .modalias   = "m25p10",

        .mode   =SPI_MODE_0,   //CPOL=0, CPHA=0此處選擇具體數據傳輸模式

        .max_speed_hz    = 10000000, //最大的spi時鐘頻率

        /* Connected to SPI-0 as 1st Slave */

        .bus_num    = 0,   //設備連接在spi控制器0

        .chip_select    = 0, //片選線號,在S5PC100的控制器驅動中沒有使用它作爲片選的依據,而是選擇了下文controller_data裏的方法。

        .controller_data = &smdk_spi0_csi[0],

    },

};

static structs3c64xx_spi_csinfo smdk_spi0_csi[] = {

    [0] = {

        .set_level = smdk_m25p10_cs_set_level,

        .fb_delay = 0x3,

    },

};

static void smdk_m25p10_cs_set_level(inthigh)//spi控制器會用這個方法設置cs

{

    u32 val;

    val = readl(S5PC1XX_GPBDAT);

    if (high)

        val |= (1<<3);

    else

        val &= ~(1<<3);

    writel(val, S5PC1XX_GPBDAT);

}

 

spi_register_board_info(s3c_spi_devs,ARRAY_SIZE(s3c_spi_devs));//註冊spi_board_info。這個代碼會把spi_board_info註冊要鏈表board_list上。

事實上上文提到的spi_master的註冊會在spi_register_board_info之後,spi_master註冊的過程中會調用scan_boardinfo掃描board_list,找到掛接在它上面的spi設備,然後創建並註冊spi_device

static voidscan_boardinfo(struct spi_master *master)

{

    struct boardinfo    *bi;

    mutex_lock(&board_lock);

    list_for_each_entry(bi, &board_list,list) {

        struct spi_board_info   *chip = bi->board_info;

        unsigned        n;

        for (n = bi->n_board_info; n > 0;n--, chip++) {

            if (chip->bus_num !=master->bus_num)

                continue;

            /* NOTE: this relies onspi_new_device to

             * issue diagnostics when given bogus inputs

             */

            (void) spi_new_device(master, chip);//創建並註冊了spi_device

        }

    }

    mutex_unlock(&board_lock);

}

 

6spi_driver

本文先以linux內核中的/driver/mtd/devices/m25p80.c驅動爲參考。

static struct spi_driverm25p80_driver = { //spi_driver的構建

    .driver = {

        .name   ="m25p80",

        .bus    =&spi_bus_type,

        .owner  = THIS_MODULE,

    },

    .probe  = m25p_probe,

    .remove =__devexit_p(m25p_remove),

     */

};

 

spi_register_driver(&m25p80_driver);//spidriver的註冊

在有匹配的spi device時,會調用m25p_probe

static int __devinitm25p_probe(struct spi_device *spi)

{

    ……

}

根據傳入的spi_device參數,可以找到對應的spi_master。接下來就可以利用spi子系統爲我們完成數據交互了。可以參看m25p80_read函數。要完成傳輸,先理解下面幾個結構的含義:(這兩個結構的定義及詳細註釋參見include/linux/spi/spi.h

spi_message:描述一次完整的傳輸,即cs信號從高->->高的傳輸

spi_transfer:多個spi_transfer夠成一個spi_message

舉例說明:m25p80的讀過程如下圖

可以分解爲兩個spi_ transfer一個是寫命令,另一個是讀數據。具體實現參見m25p80.c中的m25p80_read函數。下面內容摘取之此函數。

 

    structspi_transfer t[2];//定義了兩個spi_transfer

    structspi_message m;//定義了一個spi_message

   spi_message_init(&m);//初始化其transfers鏈表

 

    t[0].tx_buf = flash->command;

    t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;//定義第一個transfer的寫指針和長度

   spi_message_add_tail(&t[0],&m);//添加到spi_message

    t[1].rx_buf = buf;

    t[1].len = len; //定義第二個transfer的讀指針和長度

 

   spi_message_add_tail(&t[1],&m); //添加到spi_message

    flash->command[0] = OPCODE_READ;

    flash->command[1] = from >> 16;

    flash->command[2] = from >> 8;

    flash->command[3] = from;       //初始化前面寫buf的內容

 

   spi_sync(flash->spi,&m);  //調用spi_master發送spi_message

    //spi_sync爲同步方式發送,還可以用spi_async異步方式,那樣的話,需要設置回調完成函數。

    另外你也可以選擇一些封裝好的更容易使用的函數,這些函數可以在include/linux/spi/spi.h文件中找到,如:

extern intspi_write_then_read(struct spi_device*spi,

        const u8 *txbuf, unsigned n_tx,

        u8 *rxbuf, unsigned n_rx);

    這篇博文就到這了,下篇給出一個針對m25p10完整的驅動程序。

 

 

 

Linuxspi驅動開發(2

2011-08-31 22:002145人閱讀評論(5)收藏 舉報

四、m25p10驅動測試

   目標:在華清遠見的FS_S5PC100平臺上編寫一個簡單的spi驅動模塊,在probe階段實現對m25p10ID號探測、flash擦除、flash狀態讀取、flash寫入、flash讀取等操作。代碼已經經過測試,運行於2.6.35內核。理解下面代碼需要參照m25p10的芯片手冊。其實下面的代碼和處理器沒有太大關係,這也是spi子系統的分層特點。

 

 

#include <linux/platform_device.h>

#include <linux/spi/spi.h>

#include <linux/init.h>

#include <linux/module.h>

#include <linux/device.h>

#include <linux/interrupt.h>

#include <linux/mutex.h>

#include <linux/slab.h>  // kzalloc

#include <linux/delay.h>

 

#define    FLASH_PAGE_SIZE            256

 

/* Flash Operating Commands */

#define CMD_READ_ID                     0x9f

#define CMD_WRITE_ENABLE   0x06      

#define CMD_BULK_ERASE        0xc7

#define CMD_READ_BYTES              0x03

#define CMD_PAGE_PROGRAM 0x02

#define CMD_RDSR                   0x05      

 

/* Status Register bits. */

#define SR_WIP          1   /* Write in progress */

#define SR_WEL          2   /* Write enable latch */

 

/* ID Numbers */

#define MANUFACTURER_ID            0x20

#define DEVICE_ID                    0x1120

 

/* Define max times to check status register before we give up. */

#define MAX_READY_WAIT_COUNT    100000

#define    CMD_SZ 4

 

struct m25p10a {

       struct spi_device    *spi;

       struct mutex          lock;

       char erase_opcode;

       char cmd[ CMD_SZ ];

};

 

/*

 * Internal Helper functions

 */

 

/*

 * Read the status register, returning its value in the location

 * Return the status register value.

 * Returns negative if error occurred.

 */

static int read_sr(struct m25p10a *flash)

{

       ssize_t retval;

       u8 code = CMD_RDSR;

       u8 val;

 

       retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

 

       if (retval < 0) {

              dev_err(&flash->spi->dev, "error %d reading SR\n",

                            (int) retval);

              return retval;

       }

 

       return val;

}

 

/*

 * Service routine to read status register until ready, or timeout occurs.

 * Returns non-zero if error.

 */

static int wait_till_ready(struct m25p10a *flash)

{

       int count;

       int sr;

 

       /* one chip guarantees max 5 msec wait here after page writes,

        * but potentially three seconds (!) after page erase.

        */

       for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {

              if ((sr = read_sr(flash)) < 0)

                     break;

              else if (!(sr & SR_WIP))

                     return 0;

 

              /* REVISIT sometimes sleeping would be best */

       }  

       printk( "in (%s): count = %d\n", count );

 

       return 1;

}

 

/*

 * Set write enable latch with Write Enable command.

 * Returns negative if error occurred.

 */

static inline int write_enable( struct m25p10a *flash )

{

       flash->cmd[0] = CMD_WRITE_ENABLE;

       return spi_write( flash->spi, flash->cmd, 1 );

}

 

/*

 * Erase the whole flash memory

 *

 * Returns 0 if successful, non-zero otherwise.

 */

static int erase_chip( struct m25p10a *flash )

{

       /* Wait until finished previous write command. */

       if (wait_till_ready(flash))

              return -1;

 

       /* Send write enable, then erase commands. */

       write_enable( flash );

       flash->cmd[0] = CMD_BULK_ERASE;

       return spi_write( flash->spi, flash->cmd, 1 );

}

 

/*

 * Read an address range from the flash chip.  The address range

 * may be any size provided it is within the physical boundaries.

 */

static int m25p10a_read( struct m25p10a *flash, loff_t from,

              size_t len, char *buf )

{

       int r_count = 0, i;

 

       flash->cmd[0] = CMD_READ_BYTES;

       flash->cmd[1] = from >> 16;

       flash->cmd[2] = from >> 8;

       flash->cmd[3] = from;

      

#if 1

       struct spi_transfer st[2];

       struct spi_message  msg;

      

       spi_message_init( &msg );

       memset( st, 0, sizeof(st) );

 

       flash->cmd[0] = CMD_READ_BYTES;

       flash->cmd[1] = from >> 16;

       flash->cmd[2] = from >> 8;

       flash->cmd[3] = from;

 

       st[ 0 ].tx_buf = flash->cmd;

       st[ 0 ].len = CMD_SZ;

       spi_message_add_tail( &st[0], &msg );

 

       st[ 1 ].rx_buf = buf;

       st[ 1 ].len = len;

       spi_message_add_tail( &st[1], &msg );

 

       mutex_lock( &flash->lock );

      

       /* Wait until finished previous write command. */

       if (wait_till_ready(flash)) {

              mutex_unlock( &flash->lock );

              return -1;

       }

 

       spi_sync( flash->spi, &msg );

       r_count = msg.actual_length - CMD_SZ;

       printk( "in (%s): read %d bytes\n", __func__, r_count );

       for( i = 0; i < r_count; i++ ) {

              printk( "0x%02x\n", buf[ i ] );

       }

 

       mutex_unlock( &flash->lock );

#endif

 

       return 0;

}

 

/*

 * Write an address range to the flash chip.  Data must be written in

 * FLASH_PAGE_SIZE chunks.  The address range may be any size provided

 * it is within the physical boundaries.

 */

static int m25p10a_write( struct m25p10a *flash, loff_t to,

              size_t len, const char *buf )

{

       int w_count = 0, i, page_offset;

       struct spi_transfer st[2];

       struct spi_message  msg;

#if 1

       if (wait_till_ready(flash)) {    //讀狀態,等待ready

              mutex_unlock( &flash->lock );

              return -1;

       }

#endif

       write_enable( flash );  //寫使能

      

       spi_message_init( &msg );

       memset( st, 0, sizeof(st) );

 

       flash->cmd[0] = CMD_PAGE_PROGRAM;

       flash->cmd[1] = to >> 16;

       flash->cmd[2] = to >> 8;

       flash->cmd[3] = to;

 

       st[ 0 ].tx_buf = flash->cmd;

       st[ 0 ].len = CMD_SZ;

       spi_message_add_tail( &st[0], &msg );

 

       st[ 1 ].tx_buf = buf;

       st[ 1 ].len = len;

       spi_message_add_tail( &st[1], &msg );

 

       mutex_lock( &flash->lock );

 

       /* get offset address inside a page */

       page_offset = to % FLASH_PAGE_SIZE;  

 

       /* do all the bytes fit onto one page? */

       if( page_offset + len <= FLASH_PAGE_SIZE ) { // yes

              st[ 1 ].len = len;

              printk("%d, cmd = %d\n", st[ 1 ].len, *(char *)st[0].tx_buf);

              //while(1)

              {

              spi_sync( flash->spi, &msg );

              }

              w_count = msg.actual_length - CMD_SZ;

       }

       else {      // no

       }

       printk( "in (%s): write %d bytes to flash in total\n", __func__, w_count );

       mutex_unlock( &flash->lock );

       return 0;

}

 

static int check_id( struct m25p10a *flash )

{

       char buf[10] = {0};

       flash->cmd[0] = CMD_READ_ID;

       spi_write_then_read( flash->spi, flash->cmd, 1, buf, 3 );

       printk( "Manufacture ID: 0x%x\n", buf[0] );

       printk( "Device ID: 0x%x\n", buf[1] | buf[2]  << 8 );

       return buf[2] << 16 | buf[1] << 8 | buf[0];

}

 

static int m25p10a_probe(struct spi_device *spi)

{

       int ret = 0;

       struct m25p10a      *flash;

       char buf[ 256 ];

       printk( "%s was called\n", __func__ );

       flash = kzalloc( sizeof(struct m25p10a), GFP_KERNEL );

       if( !flash ) {

              return -ENOMEM;

       }

       flash->spi = spi;

       mutex_init( &flash->lock );

       /* save flash as driver's private data */

       spi_set_drvdata( spi, flash );

      

       check_id( flash );    //讀取ID

#if 1

       ret = erase_chip( flash );  //擦除

       if( ret < 0 ) {

              printk( "erase the entirely chip failed\n" );

       }

       printk( "erase the whole chip done\n" );

       memset( buf, 0x7, 256 );

       m25p10a_write( flash, 0, 20, buf); //0地址寫入207

       memset( buf, 0, 256 );

       m25p10a_read( flash, 0, 25, buf ); //0地址讀出25個數

#endif

       return 0;

}

 

static int m25p10a_remove(struct spi_device *spi)

{

       return 0;

}

 

static struct spi_driver m25p10a_driver = {

       .probe = m25p10a_probe,

       .remove = m25p10a_remove,

       .driver = {

              .name = "m25p10a",

       },

};

 

static int __init m25p10a_init(void)

{

       return spi_register_driver(&m25p10a_driver);

}

 

static void __exit m25p10a_exit(void)

{

       spi_unregister_driver(&m25p10a_driver);

}

 

module_init(m25p10a_init);

module_exit(m25p10a_exit);

 

MODULE_DESCRIPTION("m25p10a driver for FS_S5PC100");

MODULE_LICENSE("GPL");

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章