自旋鎖的原理及使用

什麼是自旋鎖

是指當一個線程在獲取鎖的時候,如果鎖已經被其它線程獲取,那麼該線程將循環等待,然後不斷的判斷鎖是否能夠被成功獲取,直到獲取到鎖纔會退出循環。

獲取鎖的線程一直處於活躍狀態,但是並沒有執行任何有效的任務,使用這種鎖會造成busy-waiting

它是爲實現保護共享資源而提出一種鎖機制。其實,自旋鎖與互斥鎖比較類似,它們都是爲了解決對某項資源的互斥使用。無論是互斥鎖,還是自旋鎖,在任何時刻,最多隻能有一個保持者,也就說,在任何時刻最多隻能有一個執行單元獲得鎖。但是兩者在調度機制上略有不同。對於互斥鎖,如果資源已經被佔用,資源申請者只能進入睡眠狀態。但是自旋鎖不會引起調用者睡眠,如果自旋鎖已經被別的執行單元保持,調用者就一直循環在那裏看是否該自旋鎖的保持者已經釋放了鎖,”自旋”一詞就是因此而得名。

自旋鎖存在的問題

  1. 如果某個線程持有鎖的時間過長,就會導致其它等待獲取鎖的線程進入循環等待,消耗CPU。使用不當會造成CPU使用率極高。
  2. 上面Java實現的自旋鎖不是公平的,即無法滿足等待時間最長的線程優先獲取鎖。不公平的鎖就會存在“線程飢餓”問題。

自旋鎖的優點

  1. 自旋鎖不會使線程狀態發生切換,一直處於用戶態,即線程一直都是active的;不會使線程進入阻塞狀態,減少了不必要的上下文切換,執行速度快
  2. 非自旋鎖在獲取不到鎖的時候會進入阻塞狀態,從而進入內核態,當獲取到鎖的時候需要從內核態恢復,需要線程上下文切換。 (線程被阻塞後便進入內核(Linux)調度狀態,這個會導致系統在用戶態與內核態之間來回切換,嚴重影響鎖的性能)

linux內核提供了位和整形變量的原子操作函數,這些函數的實現也是以來cpu的原子操作,與cpu底層架構有關。就arm處理器而言,底層的實現細節主要通過彙編指令ldrex和strex來完成。原子操作可以保證對位和整形數據的操作是排他性的,所以爲臨界區代碼的互斥訪問奠定了基礎。自旋鎖就是通過執行一個原子操作,測試並設置某個內存變量,由於它是原子操作,所以對該變量的訪問是排他性的,如何測試到鎖爲空閒,則獲取該自旋鎖,否則重複執行該原子操作,直至該鎖可用爲止。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章