論文研讀:CVPR2020 相關文章

目錄

What Can Be Transferred: Unsupervised Domain Adaptation for Endoscopic Lesions Segmentation(cvpr2020)

DEPARA: Deep Attribution Graph for Deep Knowledge Transferability(cvpr2020 oral)

Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics

Self-supervised Learning of Interpretable Keypoints from Unlabelled Videos

Distilling Cross-Task Knowledge via Relationship Matching

Revisiting Knowledge Distillation via Label Smoothing Regularization

Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering


What Can Be Transferred: Unsupervised Domain Adaptation for Endoscopic Lesions Segmentation(cvpr2020)

Author:Jiahua Dong,..., Xiaowei Xu

問題:遷移的時候對所有信息同等對待,有些信息會損耗目標網絡。how to automatically capture transferable visual characterizations and semantic representations while neglecting irrelevant knowledge across domains

方法:
  • alternatively determine where and how to explore transferable domain-invariant knowledge。
  • 模塊1:殘差轉化模塊  residual transferability-aware bottleneck is developed for TD to highlight where to translate transferable
    visual information while preventing irrelevant translation。TD 不能保證倆domain的特徵對齊。個人覺得類似於風格遷移
  • 模塊2:Residual Attention on Attention Block (RA2B) is proposed to encode domain-invariant knowledge with high transferability scores, which assists TF in exploring how to augment transferable semantic features and boost the translation performance of module TD in return  用的Attention機制加強某些轉化的特徵
  • 環結構,參數交替更新。Our model could be regarded as a closed loop to alternatively update the parameters of TD and TF
 

DEPARA: Deep Attribution Graph for Deep Knowledge Transferability(cvpr2020 oral)

Author:Jie Song,..., Mingli Song
 
問題:遷移學習中,對目標任務來說,哪個預訓練模型或layer更有用?最優的layer選擇有許多因素:任務相關性、目標數據數量等
 
方法:
  1. probe data:無標註的目標數據
  2. Nodes:每一個data的attribution
  3. attribution計算=Gradient*Input,
  4. Edges:每兩個點之間的cosine similarity
  5. 這樣對於每一個任務都能有一個Graph,由此計算任務之間的相似性:
  6. 由於F是來自於不同模型、不同layer,所以也能計算選擇哪一層作爲遷移

 

Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics

出發點:discriminate global image statistics.

亮點:

  1. local statistics are largely unchanged, while global statistics are clearly altered
  2. 最後的loss function中以inpainter爲主,自監督訓練和classifier不衝突:
    1. 這樣做有以下好處:
    2. A separate tuning of training parameters is possible, 2) GAN tricks can be applied without affecting the classififier C, 3) GAN training can be stable even when the classififier wins

自監督方法框架:通過一個邊框復原的方法復原的圖像和原圖差異是非常大的

其中的classifier模塊:

 

Self-supervised Learning of Interpretable Keypoints from Unlabelled Videos

亮點:無監督關鍵點識別

方法:利用一個和目標數據集無關的其他參考pose,去擬合一個分佈

 

Distilling Cross-Task Knowledge via Relationship Matching

問題:目前的蒸餾方法its dependence on the instance-label relationship restricts both teacher and student to the same label space.

通用蒸餾方法:

方法:emphasize the instance-instance relationship to bridge the knowledge transfer across different tasks

  1. 使用triplet,將T、S的特徵層遷移過去。xi,xj,xk代表一組triple,P代表T和S各自產生的度量空間
  2. 遷移分類層:在每一個mini-batch中,讓student的序號label1靠近Teacher的序號label1

 

Revisiting Knowledge Distillation via Label Smoothing Regularization

問題:對於傳統知識蒸餾的探討(大Teacher訓練小Student)

發現:

  1. 小模型同樣能促進大模型學習(Reversed KD
  2. poorly-trained teacher models with worse performance can also boost students.(Defective KD )
  3. Knowledge distillation is a learned label smoothing regularization(LSR) LSR解讀
方法:本文在發現3的基礎上提出了Teacher-free Knowledge Distillation (Tf-KD)。框架= Born-again networks + Soft targets
 
 

Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering

we are motivated by the assumption of structural domain similarity, and propose to directly uncover the intrinsic target discrimination via discriminative clustering of target data.
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章