JDK中線程池及其相關參數總結

一、線程池工廠類Executors

java多線程開發時,常常用到線程池技術,JDK裏提供瞭如下Executors工廠類:

public class Executors {

    //創建固定數量的線程:參數nThreads爲線程個數
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

    //創建固定數量的線程:參數nThreads爲線程個數,參數threadFactory爲創建Thread對象的工程方法對象
    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }

    //創建單個工作線程
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

    //創建單個工作線程: 參數threadFactory爲創建Thread對象的工程方法對象
    public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>(),
                                    threadFactory));
    }

    /**
     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available.  These pools will typically improve the performance
     * of programs that execute many short-lived asynchronous tasks.
     * Calls to {@code execute} will reuse previously constructed
     * threads if available. If no existing thread is available, a new
     * thread will be created and added to the pool. Threads that have
     * not been used for sixty seconds are terminated and removed from
     * the cache. Thus, a pool that remains idle for long enough will
     * not consume any resources. Note that pools with similar
     * properties but different details (for example, timeout parameters)
     * may be created using {@link ThreadPoolExecutor} constructors.
     *
     * @return the newly created thread pool
     */
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

    /**
     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available, and uses the provided
     * ThreadFactory to create new threads when needed.
     * @param threadFactory the factory to use when creating new threads
     * @return the newly created thread pool
     * @throws NullPointerException if threadFactory is null
     */
    public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>(),
                                      threadFactory);
    }

    /**
     * Creates a single-threaded executor that can schedule commands
     * to run after a given delay, or to execute periodically.
     * (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * {@code newScheduledThreadPool(1)} the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.
     * @return the newly created scheduled executor
     */
    public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1));
    }

    /**
     * Creates a single-threaded executor that can schedule commands
     * to run after a given delay, or to execute periodically.  (Note
     * however that if this single thread terminates due to a failure
     * during execution prior to shutdown, a new one will take its
     * place if needed to execute subsequent tasks.)  Tasks are
     * guaranteed to execute sequentially, and no more than one task
     * will be active at any given time. Unlike the otherwise
     * equivalent {@code newScheduledThreadPool(1, threadFactory)}
     * the returned executor is guaranteed not to be reconfigurable to
     * use additional threads.
     * @param threadFactory the factory to use when creating new
     * threads
     * @return a newly created scheduled executor
     * @throws NullPointerException if threadFactory is null
     */
    public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1, threadFactory));
    }

    /**
     * Creates a thread pool that can schedule commands to run after a
     * given delay, or to execute periodically.
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle
     * @return a newly created scheduled thread pool
     * @throws IllegalArgumentException if {@code corePoolSize < 0}
     */
    public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }

    /**
     * Creates a thread pool that can schedule commands to run after a
     * given delay, or to execute periodically.
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle
     * @param threadFactory the factory to use when the executor
     * creates a new thread
     * @return a newly created scheduled thread pool
     * @throws IllegalArgumentException if {@code corePoolSize < 0}
     * @throws NullPointerException if threadFactory is null
     */
    public static ScheduledExecutorService newScheduledThreadPool(
            int corePoolSize, ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
    }
}

二、線程池ThreadPoolExecutor類

在上述創建線程池的方法中基本上都用到了ThreadPoolExecutor類,這個類的七個參數詳細如下:

   /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code threadFactory} or {@code handler} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)

從源碼中可以看出,線程池的構造函數有7個參數,分別是corePoolSize、maximumPoolSize、keepAliveTime、unit、workQueue、threadFactory、handler。

1、corePoolSize 線程池核心線程大小

線程池中會維護一個最小的線程數量,即使這些線程處理空閒狀態,他們也不會 被銷燬,除非設置了allowCoreThreadTimeOut。這裏的最小線程數量即是corePoolSize。

2、maximumPoolSize 線程池最大線程數量

一個任務被提交到線程池後,首先會緩存到工作隊列(後面會介紹)中,如果工作隊列滿了,則會創建一個新線程,然後從工作隊列中的取出一個任務交由新線程來處理,而將剛提交的任務放入工作隊列。線程池不會無限制的去創建新線程,它會有一個最大線程數量的限制,這個數量即由maximunPoolSize來指定。

3、keepAliveTime 空閒線程存活時間

一個線程如果處於空閒狀態,並且當前的線程數量大於corePoolSize,那麼在指定時間後,這個空閒線程會被銷燬,這裏的指定時間由keepAliveTime來設定

4、unit 空間線程存活時間單位

keepAliveTime的計量單位

5、workQueue 工作隊列

新任務被提交後,會先進入到此工作隊列中,任務調度時再從隊列中取出任務。jdk中提供了四種工作隊列:

  • ①ArrayBlockingQueue

基於數組的有界阻塞隊列,按FIFO排序。新任務進來後,會放到該隊列的隊尾,有界的數組可以防止資源耗盡問題。當線程池中線程數量達到corePoolSize後,再有新任務進來,則會將任務放入該隊列的隊尾,等待被調度。如果隊列已經是滿的,則創建一個新線程,如果線程數量已經達到maxPoolSize,則會執行拒絕策略。

  • ②LinkedBlockingQuene

基於鏈表的無界阻塞隊列(其實最大容量爲Interger.MAX),按照FIFO排序。由於該隊列的近似無界性,當線程池中線程數量達到corePoolSize後,再有新任務進來,會一直存入該隊列,而不會去創建新線程直到maxPoolSize,因此使用該工作隊列時,參數maxPoolSize其實是不起作用的。

  • ③SynchronousQuene

一個不緩存任務的阻塞隊列,生產者放入一個任務必須等到消費者取出這個任務。也就是說新任務進來時,不會緩存,而是直接被調度執行該任務,如果沒有可用線程,則創建新線程,如果線程數量達到maxPoolSize,則執行拒絕策略。

  • ④PriorityBlockingQueue

具有優先級的無界阻塞隊列,優先級通過參數Comparator實現。

6、threadFactory 線程工廠

創建一個新線程時使用的工廠,可以用來設定線程名、是否爲daemon線程等等

7、handler 拒絕策略

當工作隊列中的任務已到達最大限制,並且線程池中的線程數量也達到最大限制,這時如果有新任務提交進來,就會用到拒絕策略。

jdk中提供了4中拒絕策略:

  • 調用者線程中直接執行:CallerRunsPolicy
    public static class CallerRunsPolicy implements RejectedExecutionHandler {

        public CallerRunsPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
        }
    }
  • 拋出拒絕執行異常:AbortPolicy
public static class AbortPolicy implements RejectedExecutionHandler {

        public AbortPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }
  • 直接丟棄任務(什麼都不做): DiscardPolicy
public static class DiscardPolicy implements RejectedExecutionHandler {

        public DiscardPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }
  • 丟棄最早任務策略:DiscardOldestPolicy

拋棄進入隊列最早的那個任務,然後嘗試把這次拒絕的任務放入隊列

public static class DiscardOldestPolicy implements RejectedExecutionHandler {

        public DiscardOldestPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }
        }
    }

默認的拒絕策略是:

private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章