如何使用 COMSOL 进行电热分析?

一、电磁损耗的热源有多种类型。我们可以使用 COMSOL软件的内置功能计算所有的电磁热源(准静态或高频状态);软件中预定义的接口包括焦耳热,感应加热,微波加热 和激光加热。
1、焦耳热多物理接口耦合了固体传热 与电流 接口(AC/DC 模块)。它考虑了由传导电流和介电损耗产生的热量。
使用 焦耳热接口模拟电阻装置。
在这里插入图片描述

2、感应加热多物理接口耦合了固体传热与磁场接口(AC/DC 模块)。它考虑了由感应电流和磁损耗产生的热量。
在这里插入图片描述
3、微波加热多物理接口耦合了固体传热 与电磁波,频域 接口(RF模块)。它考虑了高频状态下由电阻、电介质和磁损耗产生的热量。
在这里插入图片描述
4、激光加热 多物理接口耦合了固体传热 接口与电磁波,波束包络(波动光学模块)。它考虑了在高频状态下由电阻,电介质和磁损耗产生的热量。
在这里插入图片描述
上述内容是 COMSOL 软件中所有多物理场接口的频域公式,以及低频(AC/DC 模块)接口的时域公式。同时,为了完整描述损耗,焦耳加热 接口了考虑了介电损耗(用 ε” 表示),尽管这种损耗通常仅在高频状态下才重要。

材料中的磁损耗取决于 B 和 H 之间的非线性关系。通过时域中的完整磁滞回线可以完整地描述这种损耗,但μ’’是在频域中量化磁滞损耗的一种便捷方法。对于具有明显磁滞损耗的时域模拟,磁滞 Jiles-Atherton 模型 选项可作为本构关系在第一个物理子节点中使用。相对磁导率是默认的磁场模型本构关系。

二、电热分析的关键:时间尺度
在仿真过程中,交流激励的主要优点是在有复值解的频域中通过稳态公式进行求解。但我们可能希望观察到:设备温度随时间如何变化,甚至电学特性如何随时间或温度变化。这是否意味着我们只能使用瞬态研究类型模拟电磁热?

与替代方案相比,使用瞬态公式来解决时谐电磁问题的计算成本非常高。尤其是,如果我们认为电磁循环发生在毫秒或纳秒尺度上,而温度上升可能需要几分钟或几小时,这些就会成倍增加成本。那么,如何在合理的时间内解决此类问题呢?

使用COMSOL中的内置研究类型进行建模时,我们根本不需要求解完整的瞬态问题,而只需要通过单向耦合或分离双向耦合的方法即可解决。假设电磁的循环时间比热时间尺度短,我们可以将问题分解为几个步骤。第一步,计算电磁损耗。对于交流信号,我们通过解决频域中的电磁问题,获得周期平均损耗。第二步,将这些损耗作为恒定的热源插入项,解决稳态或瞬态传热问题。

三、对于时谐电磁热问题,我们可以从以下四种研究类型中选择:
频域-稳态;频域-瞬态;频域-稳态,单向耦合;频域-瞬态,单向耦合。
1、严格来说,单向耦合研究类型的研究过程分两个步骤,并且是两个物理场之间单向耦合的最佳选择。对于此类型研究,可在频域中解决电磁问题,并计算出周期平均损耗。在随后的稳态或瞬态传热研究中,可将这些损耗作为热源插入项。单向耦合研究类型使用的时间和计算资源更少。
2、通常,我们更常使用“频域-稳态”和“频域-瞬态”研究类型处理更复杂的问题,例如与温度有关的材料属性。在这些研究中,使用分离双向耦合求解的方法,在电磁和传热问题之间反复迭代,直到满足收敛标准为止。当软件检测到足够大的温升,并且材料特性发生显著变化时,将使用新的数值重新计算电磁损耗和温度场,重复这个过程直到收敛。
3、多少温升才被认为足够大?什么是材料特性的显著变化?这由研究设置中指定的相对容差确定。根据所需的精度,默认容差是个不错的起点,甚至可能比需要的值更严格。默认的物理控制网格也是合适的,因为软件可以基于物理场和研究设置有根据的推测单元类型和大小

四、直流电问题
1、在默认情况下,物理接口的方程式设置为“研究控制”。这意味着对于瞬态电磁热研究,电流方程将是瞬态的,其中包括电位移场的时间导数。在大多数情况下,电流流过导电性能良好的导体时,∂D/∂t项可以忽略不计,并且可以通过删除该项,来节省计算资源。此时,我们可以在”电流(ec)”节点的“设置”窗口,将方程式强制设置为稳态。
2、为了比较不同仿真需求的方程式设置,我们对芯片上排列的键合线使用焦耳热进行了研究。在研究中,我们同时执行了单向耦合(不依赖于温度的材料特性)和双向耦合(依赖于温度的线性电阻率传导电流模型)。在这两种情况下,采用两种公式都可以获得相同的解,但是当使用稳态公式解决电流问题时,仿真需要的时间更少并且占用的内存更少。本示例在计算上相对较简单,但稳态电流公式(如果可能)更适用于求解计算更复杂的问题。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章