Handler機制一篇文章深入分析Handler、Message、MessageQueue、Looper流程和源碼

首先附上我的幾篇其它文章鏈接感興趣的可以看看,如果文章有異議的地方歡迎指出,共同進步,順便點贊謝謝!!!
Android framework 源碼分析之Activity啓動流程(android 8.0)
Android studio編寫第一個NDK工程的過程詳解(附Demo下載地址)
面試必備1:HashMap(JDK1.8)原理以及源碼分析
面試必備2:JDK1.8LinkedHashMap實現原理及源碼分析
Android事件分發機制原理及源碼分析
View事件的滑動衝突以及解決方案
Android三級緩存原理及用LruCache、DiskLruCache實現一個三級緩存的ImageLoader

Handler概述

Handler是一種通信機制,只不過在Android我們常用來更新UI,接下來我將分別從Message、MessageQueue、Looper、handler以及ThreadLocal的源碼去深入理解handler的執行流程。

Message :消息對象

Message消息對象,它是數據的載體,內部有幾個屬性,可以讓我們攜帶數據;而Message通過內部有一個池機制,可以讓我們複用Message對象 ,而這個消息池的最大容量 MAX_POOL_SIZE = 50,消息池是通過鏈表數據結構來組織起來的。
消息池:想要了解池機制我們需要從Message的 obtain() 和 recycle()兩個核心方法入手了池機制,首先我們要先看看Message中的幾個重要的成員變量,next;存的是我們當前個消息對象的下一個消息對象的地址,同過next屬性構建出一個鏈表結果的消息池。

   /**
     * 此處我只是沾出Message的幾個常用的重要屬性,其他屬性我們不常用在這裏沒貼出來有需要的大家可以去源碼看
    */
    public int what;
    public int arg1;
    public int arg2;
    public Object obj;//上面四個我們常用攜帶數據標識
    long when;  //標識當前消息的觸發時間
    Handler target;//存儲發送消息的hanndler
    Message next;//存的是我們當前消息對象的下一個消息對象的地址,通過next屬性構建出一個鏈表結果的消息池
    private static Message sPool; //sPool屬性:我們當前池的頭指針位置  ,即只存出鏈表的第一個消息地址
    private static final Object sPoolSync = new Object();//同步鎖防止線程污染
    private static int sPoolSize = 0;//消息池大小
    private static final int MAX_POOL_SIZE = 50;//消息池最大容量

接下來我們看看obtain()方法的源碼:

  /**
     * Return a new Message instance from the global pool. Allows us to
     * avoid allocating new objects in many cases.
     * if (sPool爲空){
      *    return; new Message();  //無可複用的消息,消息池爲空
      *}else {
     *       return 從消息池中獲取;   }
     */
    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;//取出表頭的Message對象返回
                sPool = m.next;//講鏈表後移,記錄新的表頭消息
                m.next = null;//移除第一個
                m.flags = 0; // clear in-use清除標記
                sPoolSize--;//鏈表長度減去1
                return m;
            }
        }
        return new Message();
    }

接下來我們看看recycle()方法的源碼:
先判斷當前消息對象是否在使用中,如果在使用中,則該消息對象無法回收 直接return, 否則調用recycleUnchecked()方法回收消息。需要注意的是recycle方法不需要我們手動調用,它的調用實在Looper的loop()方法中自動調用,詳細過程將在Looper源碼中進行分析

/**
     * Return a Message instance to the global pool.
     * <p>
     * You MUST NOT touch the Message after calling this function because it has
     * effectively been freed.  It is an error to recycle a message that is currently
     * enqueued or that is in the process of being delivered to a Handler.
     * </p>
     */
    public void recycle() {
        if (isInUse()) {
            if (gCheckRecycle) {
                throw new IllegalStateException("This message cannot be recycled because it "
                        + "is still in use.");
            }//在使用中的消息對象無法回收  直接return
            return;
        }
        recycleUnchecked();
    }

 /**
     * Recycles a Message that may be in-use.
     * Used internally by the MessageQueue and Looper when disposing of queued Messages.
     * recycleUnchecked回收未在使用中的消息對象,實現鏈表加1
     */
    void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;//以上操作把要回收的message對象的成員變量回歸初始值
	
		//以下是重點:實現鏈表連接池的加1,將message存入消息池中,
        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;//先把當前回收的message的next指向消息池的鏈表頭
                sPool = this;//再將自己當做新的表頭
                sPoolSize++;//長度加1
            }
        }
    }

通過以上分析,我們可以知道Mesage是消息對象handler中消息數據的載體,只是它內置消息池實現消息對象的複用以避免new 對象時造成的內存讓費。

MessageQueue:消息隊列的源碼分析

MessageQueue消息隊列用於存儲handler發送的Message對象,本質上還是通過Message對象的next屬性組織起一個鏈表雙向鏈表,具有先進先出的特性。接下來我將從它的存儲(入隊)enqueueMessage()方法和取出(出隊)next() 兩個方法進行分析,需要注意的是出隊和入隊操作都是按照Message的when屬性進行。

首先我們先分析next()方法源碼 :

  • 調用時機是在Looper.loop()方法的死循環中獲取消息,根據觸發時間(Message.when屬性)判斷。
  • 如果觸發時間到了,那麼就將當前消息取出return給Looper進行處理, 如果觸發時間沒到,那麼就運算出一個時間的差值 ——我們此刻距離消息觸發還需要多久(nextPollTimeoutMillis)
  • 在下一次循環的時候,會調用netive方法——nativePollOnce(nextPollTimeoutMillis),nativePollOnce方法中有一個wait動作,讓線程暫停nextPollTimeoutMillis時間值,等到nextPollTimeoutMillis時間達到以後,循環繼續執行
/**
*取出下一個消息的動作
*/
Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {//開啓死循環獲取未處理的消息
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
			//調用本地native的nativePollOnce(ptr, nextPollTimeoutMillis)方法休眠
			//nextPollTimeoutMillis=msg.when-當前系統時間 
            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        //如果當前系統時間< msg.when計算時間差值,在上面調用
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.否則取出當前消息返回給Looper
                        //消息隊列中移除當前消息並更新相關狀態,鏈表的移除即prevMsg 當前的消息直接指向它
                        //的下一個消息的下一個msg.next
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;//否則取出當前消息返回給Looper
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

				//下面是處理一些異常情況,不是核心代碼(可忽略)
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

enqueueMessage()方法的源碼 調用時機:是在Handler中enqueueMessage()方法調用,至於詳細的調用過程我將在Handler的源碼中進行分析,這裏不再贅述。

/**
*MessageQueue中
*enqueueMessage方法源碼
*/
 boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {//msg.target在message源碼中說過他是用來存儲發送當前消息的Handler對象
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }//上面是對Message使用的異常情況的判斷(非核心代碼)

            msg.markInUse();//更新當前message的使用狀態
            msg.when = when;//取出入隊消息的觸發時間
            
            Message p = mMessages;//表頭消息
             //是否需要喚醒。因爲在next中nativePollOnce
            //(nextPollTimeoutMillis)中有一個wait動作 ,線程會暫停運行nextPollTimeoutMillis時間值
            boolean needWake;
          
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.隊列爲空時把當前Message作爲新表頭
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                //否則入隊
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;//記入上一個Message
                for (;;) {//死循環前後比較時間  根據when去確定要插入的位置
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
            //喚醒線程,調用native方法
                nativeWake(mPtr);
            }
        }
        return true;
    }

到此MessageQueue的enqueueMessage()和next()入隊和出隊分析完成。

Looper :消息輪詢器

Looper :消息輪詢器:

  • 作用: 不停的從MessageQueue中獲取未處理的消息交給handler去處理
  • Looper 通過prepare()方法 獲取和實例化Looper對象,本身是一個單例模式只能通過prepare()實例化
  • Looper 的loop()方法是通過一個死循環不斷的從MessageQueue中讀取未處理的消息,其實就是在不停對MessageQueue進行next()動作,不斷的拿到我們需要處理的下一個消息進行處理
  • 每一個Looper都自帶一個自己的MessageQueue,在自己的構造器中就已經進行了實例化
  • next()方法取出消息後將消息交給當前消息的msg.target. dispatchMessage ()方法處理,在上面Message的源碼中分析過msg.target存儲的是發送該消息的handler對象,即調用handler. dispatchMessage ()方法處理消息
  • 在next方法的最後調用msg.recycleUnchecked()方法處理回收該消息對象

以上便是Looer的大致流程,接下來分析prepare()和loop()方法的源碼

prepare()方法源碼分析

 /** Initialize the current thread as a looper.  prepare方法源碼
      * This gives you a chance to create handlers that then reference
      * this looper, before actually starting the loop. Be sure to call
      * {@link #loop()} after calling this method, and end it by calling
      * {@link #quit()}.
    
      */
    public static void prepare() {
        prepare(true);
    }
 /**
    *藉助ThreadLoacl來幫我們進行Looper對象的存和取,實現線程之間數據的隔離存儲,在handler中通過ThreadLocal.get();取出looper對象,詳細內容將會在Handler源碼中進行分析 
    */
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {//線程有且只有一個Looper對象
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        //實例化Looper對象並存儲到  sThreadLocal
        sThreadLocal.set(new Looper(quitAllowed));
    }

loop()方法源碼分析:

  /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
    
     * 去除部分代碼看主流程
     *   final Looper me = myLooper();//通過 myLooper()獲取Looper對象
     *   final MessageQueue queue = me.mQueue;//通過Looper獲取消息隊列
     *    for (;;) {//開啓死循環
     *      Message msg = queue.next(); // Messagequeue.next()取出消息
     *      try {
     *            msg.target.dispatchMessage(msg);//交給Handler處理
     *        }
     *     msg.recycleUnchecked();//回收消息對象
     */
    public static void loop() {
        final Looper me = myLooper();//通過 myLooper()獲取Looper對象
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;//通過Looper獲取消息隊列

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);//);//交給Handler處理
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
            msg.recycleUnchecked();//;//回收消息對象
        }
    }

myLooper()方法源碼:

/**
     * Return the Looper object associated with the current thread.  Returns
     * null if the calling thread is not associated with a Looper.
     */
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();//從sThreadLocal中獲取Looper對象
    }

到此Looper的工作流程完畢,至於使用ThreadLocal去存儲獲取Looper對象的原因有:

  1. 幫我們實現一個線程有且只有一個Looper對象
  2. 數據隔離:可以讓我們在當前線程的任意地方獲取到Looper對象,並保證處於同一個線程中的類,取到的是同一個Looper對象,進而操作同一個MessageQueue。只有當我們能夠保證發送消息和接收消息所操作的MessageQueue是同一個消息隊列的時候,程序才能運轉正常。

Handler:消息的發送者 和 消息的最終處理者

Handler的發送和處理分別是通過Handler的enqueueMessage()和dispatchMessage()兩個核心方法進行的。結下來將從“構造起”和以上兩個方法的源碼入手

Handler的構造方法初始化數據:

  1. 通過 Looper.myLooper()實例化了當前線程的Looper對象 mLooper
  2. 並且通過looper對象獲取MessageQueue mQueue
  3. 從構造器中可以看出初始化Handler必須先初始化Looper對象,而在我們平時使用過程中主線程並沒有先調用 Looper.myLooper()實例化Looper對象的原因是:在應用程序啓動時ActivityThread主線程的main()方法中實例化了主線程中的Looper對象,具體源碼稍後分析。

構造器有重載但是最終都會調用如下方法:

 /**
     * @hide
     */
    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }
        mLooper = Looper.myLooper();//獲取當前線程的Looper對象
        if (mLooper == null) {
            throw new RuntimeException(
            	//從此處可以看出初始化Handler必須先初始化Looper對象
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;//通過Looper對象獲取Looper中的消息隊列MessageQueue
        mCallback = callback;
        mAsynchronous = async;
    }

消息的發送: 最終是通過調用MessageQueue調用消息隊列的enqueueMessage()方法進行存儲消息,即入隊操作。我們無論是通過調用handler的sendMessage(Message msg)、sendEmptyMessage(int what)、sendMessageDelayed(msg, delayMillis)等方法還是調用post(Runnable r)、postDelayed( )等post相關方法最終都會調用sendMessageAtTime()方法,即handler發送消息無論通過send相關方法還是post相關方法,最終都是調用sendMessageAtTime()方法發送消息。

至於如何調用到endMessageAtTime方法,非常簡單,就是通過方法重載。該過程源碼在這裏不再贅述,我們直接看sendMessageAtTime()方法的源碼:

 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;//step1獲取構造器中初始化的MessageQueue
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }//調用enqueueMessage方法
        return enqueueMessage(queue, msg, uptimeMillis);
    }

由上面看出sendMessageAtTime最終掉用了handler的enqueueMessage()方法發送消息,enqueueMessage()源碼如下:

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
 		/**
 		注意: msg.target = this;將當前Handler對象存儲到當前消息的 msg.target中,照應了Looper.loop()方法中拿到消息後通過msg.target獲取當前handler.調用msg.target.dispatchMessage()方法處理消息,即最終又交給了當前handler處理消息*/
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        //最終調用MessageQueue的enqueueMessage(msg, uptimeMillis);進行消息入隊操作
        //queue.enqueueMessage方法在上面已經分析
        return queue.enqueueMessage(msg, uptimeMillis);
    }

用dispatchMessage()方法處理消息, 是在Looper的loop()方法中調用處理消息,源碼如下:

 /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                //處理消息時判斷是否攔截消息mCallback.handleMessage(msg),返回true則不會執行下面的 
                //handleMessage(msg),即攔截了消息
                    return;
                }
            }
            //如果不攔截,回掉handleMessage方法處理消息
            handleMessage(msg);
        }
    }

到此handler的發送和處理的源碼分析完成。

爲什麼在主線程中初始化Handler對象不需要先初始化Looper

簡單分析一下ActivityThread主線程中的main方法的源碼:

//此方法是應用程序的主入口
public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
        SamplingProfilerIntegration.start();
        CloseGuard.setEnabled(false);
        Environment.initForCurrentUser();
        // Set the reporter for event logging in libcore
        EventLogger.setReporter(new EventLoggingReporter());
        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);
        Process.setArgV0("<pre-initialized>");
        //在應用程序啓動時就初始化了主線程的Looper對象
        Looper.prepareMainLooper();
        ActivityThread thread = new ActivityThread();
        thread.attach(false);
        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }
        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        //開啓死循環輪詢查詢消息
        Looper.loop();
        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

總結

到此爲止handler的源碼分析完畢。總結一下,我們通過handler發送消息的過程就是通過Looper獲取MessageQueue調用eqeueMessage方法入隊的過程,而處理消息的過程就是通過Looper的loop方法不斷的從當前線程的MessagQueue中取出消息交給發送消息的handler對象調用dispatchMessage方法處理消息,因此handler在哪個線程實例化就在哪個線程處理消息。
這是第一次寫博客,希望這篇文章對大家有所幫助,裏面的不足之處請大家留言指正。我後續也會繼續分享和編寫更多幹貨,請大家多多支持和點贊!!!謝謝

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章