socket通信原理與實現

socket的基本操作

    ①socket()函數

    ②bind()函數

    ③listen()、connect()函數

    ④accept()函數

    ⑤read()、write()函數等

    ⑥close()函數


1、socket()函數


SOCKET(2)                  Linux Programmer’s Manual                 SOCKET(2)


NAME
       socket - create an endpoint for communication

SYNOPSIS
       #include <sys/types.h>          /* See NOTES */
       #include <sys/socket.h>

       int socket(int domain, int type, int protocol);
  • domain:即協議域,又稱爲協議族(family)。常用的協議族有,AF_INETAF_INET6AF_LOCAL(或稱AF_UNIX,Unix域socket)、AF_ROUTE等等。協議族決定了socket的地址類型,在通信中必須採用對應的地址,如AF_INET決定了要用ipv4地址(32位的)與端口號(16位的)的組合、AF_UNIX決定了要用一個絕對路徑名作爲地址。
  • type:指定socket類型。常用的socket類型有,SOCK_STREAMSOCK_DGRAMSOCK_RAWSOCK_PACKETSOCK_SEQPACKET等等。
  • protocol:故名思意,就是指定協議。常用的協議有,IPPROTO_TCPIPPTOTO_UDPIPPROTO_SCTPIPPROTO_TIPC等,它們分別對應TCP傳輸協議、UDP傳輸協議、STCP傳輸協議、TIPC傳輸協議。

注意:並不是上面的type和protocol可以隨意組合的,如SOCK_STREAM不可以跟IPPROTO_UDP組合。當protocol爲0時,會自動選擇type類型對應的默認協議


當我們調用socket創建一個socket時,返回的socket描述字它存在於協議族(address family,AF_XXX)空間中,但沒有一個具體的地址。如果想要給它賦值一個地址,就必須調用bind()函數,否則就當調用connect()listen()時系統會自動隨機分配一個端口。

2、bind()函數

正如上面所說bind()函數把一個地址族中的特定地址賦給socket。例如對應AF_INETAF_INET6就是把一個ipv4或ipv6地址和端口號組合賦給socket。

NAME
       bind - bind a name to a socket

SYNOPSIS
       #include <sys/types.h>          /* See NOTES */
       #include <sys/socket.h>

       int bind(int sockfd, const struct sockaddr *addr,
                socklen_t addrlen);


int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函數的三個參數分別爲:

  • sockfd:即socket描述字,它是通過socket()函數創建了,唯一標識一個socket。bind()函數就是將給這個描述字綁定一個名字。
  • addr:一個const struct sockaddr *指針,指向要綁定給sockfd的協議地址。這個地址結構根據地址創建socket時的地址協議族的不同而不同,如ipv4對應的是: 
    struct sockaddr_in {
        sa_family_t    sin_family; /* address family: AF_INET */
        in_port_t      sin_port;   /* port in network byte order */
        struct in_addr sin_addr;   /* internet address */
    };
    
    /* Internet address. */
    struct in_addr {
        uint32_t       s_addr;     /* address in network byte order */
    };
    ipv6對應的是: 
    struct sockaddr_in6 { 
        sa_family_t     sin6_family;   /* AF_INET6 */ 
        in_port_t       sin6_port;     /* port number */ 
        uint32_t        sin6_flowinfo; /* IPv6 flow information */ 
        struct in6_addr sin6_addr;     /* IPv6 address */ 
        uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */ 
    };
    
    struct in6_addr { 
        unsigned char   s6_addr[16];   /* IPv6 address */ 
    };
    Unix域對應的是: 
    #define UNIX_PATH_MAX    108
    
    struct sockaddr_un { 
        sa_family_t sun_family;               /* AF_UNIX */ 
        char        sun_path[UNIX_PATH_MAX];  /* pathname */ 
    };
  • addrlen:對應的是地址的長度。

通常服務器在啓動的時候都會綁定一個衆所周知的地址(如ip地址+端口號),用於提供服務,客戶就可以通過它來接連服務器;而客戶端就不用指定,有系統自動分配一個端口號和自身的ip地址組合。這就是爲什麼通常服務器端在listen之前會調用bind(),而客戶端就不會調用,而是在connect()時由系統隨機生成一個。

網絡字節序與主機字節序

主機字節序就是我們平常說的大端和小端模式:不同的CPU有不同的字節序類型,這些字節序是指整數在內存中保存的順序,這個叫做主機序。引用標準的Big-Endian和Little-Endian的定義如下:

  a) Little-Endian就是低位字節排放在內存的低地址端,高位字節排放在內存的高地址端。

  b) Big-Endian就是高位字節排放在內存的低地址端,低位字節排放在內存的高地址端。

網絡字節序:4個字節的32 bit值以下面的次序傳輸:首先是0~7bit,其次8~15bit,然後16~23bit,最後是24~31bit。這種傳輸次序稱作大端字節序。由於TCP/IP首部中所有的二進制整數在網絡中傳輸時都要求以這種次序,因此它又稱作網絡字節序。字節序,顧名思義字節的順序,就是大於一個字節類型的數據在內存中的存放順序,一個字節的數據沒有順序的問題了。

所以:在將一個地址綁定到socket的時候,請先將主機字節序轉換成爲網絡字節序,而不要假定主機字節序跟網絡字節序一樣使用的是Big-Endian。務必將其轉化爲網絡字節序再賦給socket。

下面是本機字節順序跟網絡字節順序相互轉化的函數

NAME
       htonl,  htons,  ntohl,  ntohs - convert values between host and network
       byte order
SYNOPSIS
       #include <arpa/inet.h>

       uint32_t htonl(uint32_t hostlong);
       uint16_t htons(uint16_t hostshort);
       uint32_t ntohl(uint32_t netlong);
       uint16_t ntohs(uint16_t netshort);

h---host 本地主機
to  就是to 了
n  ---net 網絡的意思
l 是 unsigned long


這裏還有一個ine_addr()函數

in_addr_t inet_addr(const char *cp);

inet_addr的功能是將一個點分十進制的IP地址轉換成一個整數

3、listen()、connect()函數

如果作爲一個服務器,在調用socket()bind()之後就會調用listen()來監聽這個socket,如果客戶端這時調用connect()發出連接請求,服務器端就會接收到這個請求。
int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

listen函數的第一個參數即爲要監聽的socket描述字,第二個參數爲相應socket可以排隊的最大連接個數。socket()函數創建的socket默認是一個主動類型的,listen函數將socket變爲被動類型的,等待客戶的連接請求。

connect函數的第一個參數即爲客戶端的socket描述字,第二參數爲服務器的socket地址,第三個參數爲socket地址的長度。客戶端通過調用connect函數來建立與TCP服務器的連接。

4、accept()函數

TCP服務器端依次調用socket()bind()listen()之後,就會監聽指定的socket地址了。TCP客戶端依次調用socket()connect()之後就想TCP服務器發送了一個連接請求。TCP服務器監聽到這個請求之後,就會調用accept()函數取接收請求,這樣連接就建立好了。之後就可以開始網絡I/O操作了,即類同於普通文件的讀寫I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

accept函數的第一個參數爲服務器的socket描述字,第二個參數爲指向struct sockaddr *的指針,用於返回客戶端的協議地址,第三個參數爲協議地址的長度。如果accpet成功,那麼其返回值是由內核自動生成的一個全新的描述字,代表與返回客戶的TCP連接。

注意:accept的第一個參數爲服務器的socket描述字,是服務器開始調用socket()函數生成的,稱爲監聽socket描述字;而accept函數返回的是已連接的socket描述字。一個服務器通常僅僅只創建一個監聽socket描述字,它在該服務器的生命週期內一直存在。內核爲每個由服務器進程接受的客戶連接創建了一個已連接socket描述字,當服務器完成了對某個客戶的服務,相應的已連接socket描述字就被關閉。

5、read()、write()函數

萬事具備只欠東風,至此服務器與客戶已經建立好連接了。可以調用網絡I/O進行讀寫操作了,即實現了網絡中不同進程之間的通信!網絡I/O操作有下面幾組:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()

我推薦使用recvmsg()/sendmsg()函數,這兩個函數是最通用的I/O函數,實際上可以把上面的其它函數都替換成這兩個函數。它們的聲明如下:

       #include <unistd.h>

       ssize_t read(int fd, void *buf, size_t count);
       ssize_t write(int fd, const void *buf, size_t count);

       #include <sys/types.h>
       #include <sys/socket.h>

       ssize_t send(int sockfd, const void *buf, size_t len, int flags);
       ssize_t recv(int sockfd, void *buf, size_t len, int flags);

       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

read函數是負責從fd中讀取內容.當讀成功時,read返回實際所讀的字節數,如果返回的值是0表示已經讀到文件的結束了,小於0表示出現了錯誤。如果錯誤爲EINTR說明讀是由中斷引起的,如果是ECONNREST表示網絡連接出了問題。

write函數將buf中的nbytes字節內容寫入文件描述符fd.成功時返回寫的字節數。失敗時返回-1,並設置errno變量。 在網絡程序中,當我們向套接字文件描述符寫時有倆種可能。1)write的返回值大於0,表示寫了部分或者是全部的數據。2)返回的值小於0,此時出現了錯誤。我們要根據錯誤類型來處理。如果錯誤爲EINTR表示在寫的時候出現了中斷錯誤。如果爲EPIPE表示網絡連接出現了問題(對方已經關閉了連接)。

其它的我就不一一介紹這幾對I/O函數了,具體參見man文檔或者baidu、Google,下面的例子中將使用到send/recv。

6、close()函數

在服務器與客戶端建立連接之後,會進行一些讀寫操作,完成了讀寫操作就要關閉相應的socket描述字,好比操作完打開的文件要調用fclose關閉打開的文件。

#include <unistd.h>
int close(int fd);

close一個TCP socket的缺省行爲時把該socket標記爲以關閉,然後立即返回到調用進程。該描述字不能再由調用進程使用,也就是說不能再作爲read或write的第一個參數。

注意:close操作只是使相應socket描述字的引用計數-1,只有當引用計數爲0的時候,纔會觸發TCP客戶端向服務器發送終止連接請求。

socket中TCP的三次握手建立連接

我們知道tcp建立連接要進行“三次握手”,即交換三個分組。大致流程如下:

  • 客戶端向服務器發送一個SYN J
  • 服務器向客戶端響應一個SYN K,並對SYN J進行確認ACK J+1
  • 客戶端再想服務器發一個確認ACK K+1

只有就完了三次握手,但是這個三次握手發生在socket的那幾個函數中呢?請看下圖:

image

圖1、socket中發送的TCP三次握手

從圖中可以看出,當客戶端調用connect時,觸發了連接請求,向服務器發送了SYN J包,這時connect進入阻塞狀態;服務器監聽到連接請求,即收到SYN J包,調用accept函數接收請求向客戶端發送SYN K ,ACK J+1,這時accept進入阻塞狀態;客戶端收到服務器的SYN K ,ACK J+1之後,這時connect返回,並對SYN K進行確認;服務器收到ACK K+1時,accept返回,至此三次握手完畢,連接建立。

總結:客戶端的connect在三次握手的第二個次返回,而服務器端的accept在三次握手的第三次返回。

socket中TCP的四次握手釋放連接

上面介紹了socket中TCP的三次握手建立過程,及其涉及的socket函數。現在我們介紹socket中的四次握手釋放連接的過程,請看下圖:

image

圖2、socket中發送的TCP四次握手

圖示過程如下:

  • 某個應用進程首先調用close主動關閉連接,這時TCP發送一個FIN M;
  • 另一端接收到FIN M之後,執行被動關閉,對這個FIN進行確認。它的接收也作爲文件結束符傳遞給應用進程,因爲FIN的接收意味着應用進程在相應的連接上再也接收不到額外數據;
  • 一段時間之後,接收到文件結束符的應用進程調用close關閉它的socket。這導致它的TCP也發送一個FIN N;
  • 接收到這個FIN的源發送端TCP對它進行確認。

這樣每個方向上都有一個FIN和ACK。

6.下面給出實現的一個實例

首先,先給出實現的截圖


服務器端代碼如下:

  1. #include "InitSock.h"   
  2. #include <stdio.h>   
  3. #include <iostream>  
  4. using namespace std;  
  5. CInitSock initSock;     // 初始化Winsock庫   
  6.   
  7. int main()   
  8. {   
  9.     // 創建套節字   
  10.     SOCKET sListen = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);  
  11.     //用來指定套接字使用的地址格式,通常使用AF_INET  
  12.     //指定套接字的類型,若是SOCK_DGRAM,則用的是udp不可靠傳輸  
  13.     //配合type參數使用,指定使用的協議類型(當指定套接字類型後,可以設置爲0,因爲默認爲UDP或TCP)  
  14.     if(sListen == INVALID_SOCKET)   
  15.     {   
  16.         printf("Failed socket() \n");   
  17.         return 0;   
  18.     }   
  19.        
  20.     // 填充sockaddr_in結構 ,是個結構體  
  21.     /* struct sockaddr_in { 
  22.      
  23.     short sin_family;  //地址族(指定地址格式) ,設爲AF_INET 
  24.     u_short sin_port; //端口號 
  25.     struct in_addr sin_addr; //IP地址 
  26.     char sin_zero[8]; //空子節,設爲空 
  27.     } */  
  28.   
  29.     sockaddr_in sin;   
  30.     sin.sin_family = AF_INET;   
  31.     sin.sin_port = htons(4567);  //1024 ~ 49151:普通用戶註冊的端口號  
  32.     sin.sin_addr.S_un.S_addr = INADDR_ANY;   
  33.        
  34.     // 綁定這個套節字到一個本地地址   
  35.     if(::bind(sListen, (LPSOCKADDR)&sin, sizeof(sin)) == SOCKET_ERROR)   
  36.     {   
  37.         printf("Failed bind() \n");   
  38.         return 0;   
  39.     }   
  40.        
  41.     // 進入監聽模式   
  42.     //2指的是,監聽隊列中允許保持的尚未處理的最大連接數  
  43.   
  44.     if(::listen(sListen, 2) == SOCKET_ERROR)   
  45.     {   
  46.         printf("Failed listen() \n");   
  47.         return 0;   
  48.     }   
  49.        
  50.     // 循環接受客戶的連接請求   
  51.     sockaddr_in remoteAddr;    
  52.     int nAddrLen = sizeof(remoteAddr);   
  53.     SOCKET sClient = 0;   
  54.     char szText[] = " TCP Server Demo! \r\n";   
  55.     while(sClient==0)   
  56.     {   
  57.         // 接受一個新連接   
  58.         //((SOCKADDR*)&remoteAddr)一個指向sockaddr_in結構的指針,用於獲取對方地址  
  59.         sClient = ::accept(sListen, (SOCKADDR*)&remoteAddr, &nAddrLen);   
  60.         if(sClient == INVALID_SOCKET)   
  61.         {   
  62.             printf("Failed accept()");   
  63.         }   
  64.            
  65.            
  66.         printf("接受到一個連接:%s \r\n", inet_ntoa(remoteAddr.sin_addr));   
  67.         continue ;   
  68.     }   
  69.   
  70.     while(TRUE)   
  71.     {   
  72.         // 向客戶端發送數據   
  73.         gets(szText) ;   
  74.         ::send(sClient, szText, strlen(szText), 0);   
  75.            
  76.         // 從客戶端接收數據   
  77.         char buff[256] ;   
  78.         int nRecv = ::recv(sClient, buff, 256, 0);   
  79.         if(nRecv > 0)   
  80.         {   
  81.             buff[nRecv] = '\0';   
  82.             printf(" 接收到數據:%s\n", buff);   
  83.         }   
  84.        
  85.     }   
  86.   
  87.     // 關閉同客戶端的連接   
  88.     ::closesocket(sClient);   
  89.            
  90.     // 關閉監聽套節字   
  91.     ::closesocket(sListen);   
  92.   
  93.     return 0;   
  94. }   

客戶端代碼:
  1. #include "InitSock.h"   
  2. #include <stdio.h>   
  3. #include <iostream>   
  4. using namespace std;  
  5. CInitSock initSock;     // 初始化Winsock庫   
  6.   
  7. int main()   
  8. {   
  9.     // 創建套節字   
  10.     SOCKET s = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);   
  11.     if(s == INVALID_SOCKET)   
  12.     {   
  13.         printf(" Failed socket() \n");   
  14.         return 0;   
  15.     }   
  16.        
  17.     // 也可以在這裏調用bind函數綁定一個本地地址   
  18.     // 否則系統將會自動安排   
  19.        
  20.     // 填寫遠程地址信息   
  21.     sockaddr_in servAddr;    
  22.     servAddr.sin_family = AF_INET;   
  23.     servAddr.sin_port = htons(4567);   
  24.     // 注意,這裏要填寫服務器程序(TCPServer程序)所在機器的IP地址   
  25.     // 如果你的計算機沒有聯網,直接使用127.0.0.1即可   
  26.     servAddr.sin_addr.S_un.S_addr = inet_addr("127.0.0.1");   
  27.        
  28.     if(::connect(s, (sockaddr*)&servAddr, sizeof(servAddr)) == -1)   
  29.     {   
  30.         printf(" Failed connect() \n");   
  31.         return 0;   
  32.     }   
  33.        
  34.     char buff[256];   
  35.     char szText[256] ;   
  36.        
  37.     while(TRUE)   
  38.     {   
  39.         //從服務器端接收數據   
  40.         int nRecv = ::recv(s, buff, 256, 0);   
  41.         if(nRecv > 0)   
  42.         {   
  43.             buff[nRecv] = '\0';   
  44.             printf("接收到數據:%s\n", buff);   
  45.         }   
  46.   
  47.         // 向服務器端發送數據   
  48.   
  49.         gets(szText) ;   
  50.         szText[255] = '\0';   
  51.         ::send(s, szText, strlen(szText), 0) ;   
  52.            
  53.     }   
  54.        
  55.     // 關閉套節字   
  56.     ::closesocket(s);   
  57.     return 0;   
  58. }   

封裝的InitSock.h
  1. #include <winsock2.h>   
  2. #include <stdlib.h>    
  3. #include <conio.h>    
  4. #include <stdio.h>    
  5.   
  6. #pragma comment(lib, "WS2_32")  // 鏈接到WS2_32.lib   
  7.   
  8. class CInitSock        
  9. {   
  10. public:   
  11.     CInitSock(BYTE minorVer = 2, BYTE majorVer = 2)   
  12.     {   
  13.         // 初始化WS2_32.dll   
  14.         WSADATA wsaData;   
  15.         WORD sockVersion = MAKEWORD(minorVer, majorVer);   
  16.         if(::WSAStartup(sockVersion, &wsaData) != 0)   
  17.         {   
  18.             exit(0);   
  19.         }   
  20.     }   
  21.     ~CInitSock()   
  22.     {      
  23.         ::WSACleanup();    
  24.     }   
  25. };  


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章