Java定时总结(Rx一行代码解决orz)

定时任务

  • Rx
public class RxUtils {

    static public Observable<Integer> countDown(int time) {
        if (time < 0) time = 0;
        final int countTime = time;
        return Observable.interval(0, 1, TimeUnit.SECONDS)
                .map(new Func1<Long, Integer>() {
                    @Override
                    public Integer call(Long increaseTime) {
                        return countTime - increaseTime.intValue();
                    }
                })
                .take(countTime + 1);

//
//        Observable.timer(time,TimeUnit.SECONDS).filter(new Func1<Long, Boolean>() {
//            @Override
//            public Boolean call(Long aLong) {
//                return null;
//            }
//        })
    }
}
  • Timer

    Timer timer = new Timer();
    TimerTask timerTask = new TimerTask() {
        @Override
        public void run() {
            LogUtil.v("java", "任务开始");
        }
    };
    timer.schedule(timerTask, 1000);
    timer.schedule(timerTask, 1000);
    
      ps:timer.cancel;
    
  • Handler

     Handler handler = new Handler();
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                LogUtil.v("java", "定时任务开启");
            }
        };
     handler.postDelayed(runnable, 1000);
    
    //handler.removeCallbacksAndMessages(null);
    
  • AlarmManager

       am = (AlarmManager) this.getSystemService(ALARM_SERVICE);
    
    Intent i = new Intent(this, UpdateReceiver.class);
    
    PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 0, i, 0);
    
    //am.set(AlarmManager.RTC, System.currentTimeMillis() + 1000, pendingIntent);
    
    am.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP, SystemClock.elapsedRealtime(), 1000, pendingIntent);
    

锁机制

  • 概念
    • 原子性:只有一个线程能够执行这个代码
    • 可见性: 保证前后修改的资源一致
  • 分类

    • synchronized
    • ReentrantLock:可重入的意义在于持有锁的线程可以继续持有,并且要释放对等的次数后才真正释放该锁

      class Outputter1 {
      private Lock lock = new ReentrantLock();// 锁对象

      public void output(String name) {           
          lock.lock();      // 得到锁    
      
          try {    
              //do something
          } finally {    
              lock.unlock();// 释放锁    
          }    
      }    
      

      }

    • ReadWriteLock:可以同时读取,限制写入

      class Data {        
          private int data;// 共享数据    
          private ReadWriteLock rwl = new ReentrantReadWriteLock();       
      
          public void set(int data) {    
              rwl.writeLock().lock();// 取到写锁    
              try {    
                  System.out.println(Thread.currentThread().getName() + "准备写入数据");    
                  try {    
                      Thread.sleep(20);    
                  } catch (InterruptedException e) {    
                      e.printStackTrace();    
                  }    
                  this.data = data;    
                  System.out.println(Thread.currentThread().getName() + "写入" + this.data);    
              } finally {    
                  rwl.writeLock().unlock();// 释放写锁    
              }    
          }       
      
          public void get() {    
              rwl.readLock().lock();// 取到读锁    
              try {    
                  System.out.println(Thread.currentThread().getName() + "准备读取数据");    
                  try {    
                      Thread.sleep(20);    
                  } catch (InterruptedException e) {    
                      e.printStackTrace();    
                  }    
                  System.out.println(Thread.currentThread().getName() + "读取" + this.data);    
              } finally {    
                  rwl.readLock().unlock();// 释放读锁    
              }    
          }    
      }    
      
    • 和Condition的结合

      class BoundedBuffer {  
         final Lock lock = new ReentrantLock();//锁对象  
         final Condition notFull  = lock.newCondition();//写线程条件   
         final Condition notEmpty = lock.newCondition();//读线程条件   
      
         final Object[] items = new Object[100];//缓存队列  
         int putptr/*写索引*/, takeptr/*读索引*/, count/*队列中存在的数据个数*/;  
      
         public void put(Object x) throws InterruptedException {  
           lock.lock();  
           try {  
             while (count == items.length)//如果队列满了   
               notFull.await();//阻塞写线程  
             items[putptr] = x;//赋值   
             if (++putptr == items.length) putptr = 0;//如果写索引写到队列的最后一个位置了,那么置为0  
             ++count;//个数++  
             notEmpty.signal();//唤醒读线程  
           } finally {  
             lock.unlock();  
           }  
         }  
      
         public Object take() throws InterruptedException {  
           lock.lock();  
           try {  
             while (count == 0)//如果队列为空  
               notEmpty.await();//阻塞读线程  
             Object x = items[takeptr];//取值   
             if (++takeptr == items.length) takeptr = 0;//如果读索引读到队列的最后一个位置了,那么置为0  
             --count;//个数--  
             notFull.signal();//唤醒写线程  
             return x;  
           } finally {  
             lock.unlock();  
           }  
         }   
       }          
      

多线程总结

  • 管理类

    • 基本

      ExecutorService e = Executors.newCachedThreadPool();
      ExecutorService e = Executors.newSingleThreadExecutor();
      ExecutorService e = Executors.newFixedThreadPool(3);
      // 第一种是可变大小线程池,按照任务数来分配线程,
      // 第二种是单线程池,相当于FixedThreadPool(1)
      // 第三种是固定大小线程池。
      // 然后运行
      e.execute(new MyRunnableImpl());
      
    • 定时任务线程

      ScheduledExecutorService  threadPools = Executors.newScheduledThreadPool(2);  
      
      for(int i = 0; i < 2;i++){  
          threadPools.schedule(new Runnable() {  
              @Override  
              public void run() {  
                      System.out.println(Thread.currentThread().getName() + "定时器执行");  
              }  
          }, 2, TimeUnit.SECONDS);  
      
      
      
      }  
      
      threadPools.shutdown();  
      
      //scheduleAtFixedRate 这个方法是不管你有没有执行完,反正我每隔4秒来执行一次,以相同的频率来执行
      
      //scheduleWithFixedDelay 这个是等你方法执行完后,我再隔4秒来执行,也就是相对延迟后,以固定的频率去执行
      
  • Semaphore就是一个信号量,它的作用是限制某段代码块的并发数

  • FutureTask类实现了RunnableFuture接口,我们看一下RunnableFuture接口的实现,RunnableFuture继承了Runnable接口和Future接口,而FutureTask实现RunnableFuture接口。所以它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值。

    public class Test {
        public static void main(String[] args) {
            //第一种方式
            ExecutorService executor = Executors.newCachedThreadPool();
            Task task = new Task();
            FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
            executor.submit(futureTask);
            executor.shutdown();
    
            //第二种方式,注意这种方式和第一种方式效果是类似的,只不过一个使用的是ExecutorService,一个使用的是Thread
            /*Task task = new Task();
            FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
            Thread thread = new Thread(futureTask);
            thread.start();*/
    
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e1) {
                e1.printStackTrace();
            }
    
            System.out.println("主线程在执行任务");
    
            try {
                System.out.println("task运行结果"+futureTask.get());
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e) {
                e.printStackTrace();
            }
    
            System.out.println("所有任务执行完毕");
        }
    }
    class Task implements Callable<Integer>{
        @Override
        public Integer call() throws Exception {
            System.out.println("子线程在进行计算");
            Thread.sleep(3000);
            int sum = 0;
            for(int i=0;i<100;i++)
                sum += i;
            return sum;
        }
    }
    

参考

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章