Java并发学习笔记19 Java线程池

bilibili-Java并发学习笔记19 线程池 ThreadPoolExecutor

基于 java 1.8.0

P52_Java线程池层次体系与设计原则

Executor

ExecutorService

AbstractExecutorService

ThreadPoolExecutor
-> Worker

P53_线程池创建方式与工厂模式的应用

创建 ThreadPoolExecutor 实例

package new_package.thread.p52;

import java.util.concurrent.*;

public class ThreadPoolTest {

    public static void main(String[] args) throws ExecutionException, InterruptedException {

        ExecutorService executorService = new ThreadPoolExecutor(10,
                10,
                1,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue(),
                (r, executor) -> {

                });

        executorService.execute(() -> {
            System.out.println("ThreadPool");
        });

        Future<String> future = executorService.submit(() -> {
            int i = 77;
            return "hello " + i;
        });
        System.out.println(future.get());

        executorService.shutdown();
    }
}

Executors 工厂模式 创建线程池

package new_package.thread.p52;

import java.util.concurrent.*;

public class ThreadPoolTest2 {

    public static void main(String[] args) {

        ExecutorService executorService = Executors.newFixedThreadPool(10);

        for (int i = 0; i < 1000; i++) {
            executorService.execute(() -> System.out.println(Thread.currentThread().getName()));
        }

        executorService.shutdown();
    }
}

P54_线程池构建方式与细节信息解析

ThreadPoolExecutor 的构造参数

  1. corePoolSize

核心线程数

  1. maximumPoolSize

最大线程数

  1. keepAliveTime

  2. TimeUnit

与 keepAliveTime 结合使用 , 当 maximumPoolSize > corePoolSize 时才有意义
线程池的线程数量 > corePoolSize 时,且当前任务数并没有占满所有线程池中的线程,等到 keepAliveTime 后,线程将被回收;

  1. BlockingQueue 阻塞队列
  • ArrayBlockingQueue
    • 有界队列
    • 基于数组
  • LinkedBlockingQueue
    • 有界队列
    • 基于链表
    • 吞吐量比 ArrayBlockingQueue 高
  • PriorityBlockingQueue
  • DelayQueue
  • SynchronousQueue
  • LinkedTransferQueue
  1. ThreadFactory 线程工厂

创建新线程并交由线程池管理,默认为 Executors.defaultThreadFactory()

    public static ThreadFactory defaultThreadFactory() {
        return new DefaultThreadFactory();
    }

    /**
     * Executors
     * The default thread factory
     */
    static class DefaultThreadFactory implements ThreadFactory {
        private static final AtomicInteger poolNumber = new AtomicInteger(1);
        private final ThreadGroup group;
        private final AtomicInteger threadNumber = new AtomicInteger(1);
        private final String namePrefix;

        DefaultThreadFactory() {
            SecurityManager s = System.getSecurityManager();
            group = (s != null) ? s.getThreadGroup() :
                                  Thread.currentThread().getThreadGroup();
            namePrefix = "pool-" +
                          poolNumber.getAndIncrement() +
                         "-thread-";
        }

        public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
            if (t.isDaemon())
                t.setDaemon(false);
            if (t.getPriority() != Thread.NORM_PRIORITY)
                t.setPriority(Thread.NORM_PRIORITY); // 5 -> Normal priority for a thread
            return t;
        }
    }

P55_线程池任务丢弃策略分析

  1. RejectedExecutionHandler 拒绝策略

无法执行且无法存储的线程就进入拒绝策略

package java.util.concurrent;

/**
 * 无法由 ThreadPoolExecutor 执行的任务的处理程序。
 *
 * @since 1.5
 * @author Doug Lea
 */
public interface RejectedExecutionHandler {

    /**
     * 当 execute 不能接受某个任务时,可以由 ThreadPoolExecutor 调用的方法。
     * 因为超出其界限而没有更多可用的线程或队列槽时,或者关闭 Executor 时就可能发生这种情况。
     *
     * 在没有其他替代方法的情况下,该方法可能抛出未经检查的 RejectedExecutionException,
     * 而该异常将传播到 execute 的调用者。
     *
     * @param r 所请求执行的可运行任务。
     * @param executor 试图执行此任务的执行程序。
     * @throws RejectedExecutionException 如果没有补救方法。
     */
    void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}
    /**
     * 默认拒绝策略
     */
    private static final RejectedExecutionHandler defaultHandler =
        new AbortPolicy();

ThreadPoolExecutor 提供的拒绝策略

    /**
     * 不使用线程池中的线程执行,而是在当前线程中直接执行
     */
    public static class CallerRunsPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code CallerRunsPolicy}.
         */
        public CallerRunsPolicy() { }

        /**
         * Executes task r in the caller's thread, unless the executor
         * has been shut down, in which case the task is discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
        }
    }

    /**
     * 抛出异常
     */
    public static class AbortPolicy implements RejectedExecutionHandler {

        public AbortPolicy() { }

        /**
         * 总是抛出 RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException is RuntimeException
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

    /**
     * 将任务直接丢弃,什么也不做
     */
    public static class DiscardPolicy implements RejectedExecutionHandler {

        public DiscardPolicy() { }

        /**
         * Does nothing, which has the effect of discarding task r.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }

    /**
     * 将阻塞队列中的队首的任务丢弃,将当前任务执行 execute 方法
     */
    public static class DiscardOldestPolicy implements RejectedExecutionHandler {

        public DiscardOldestPolicy() { }

        /**
         * Obtains and ignores the next task that the executor
         * would otherwise execute, if one is immediately available,
         * and then retries execution of task r, unless the executor
         * is shut down, in which case task r is instead discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }
        }
    }

P56_线程池拒绝策略实例分析与偏向锁的关闭

P57_线程池创建线程与执行任务的核心逻辑分析

在这里插入图片描述
在这里插入图片描述

P58_线程池状态分析与源码解读

线程池中有这样两个状态属性:线程池状态、线程池中线程数量;

线程池设计者使用一个字段 ctl 保存这两个状态属性

    /**
     * The main pool control state, ctl, is an atomic integer packing
     * two conceptual fields
     *   workerCount, indicating the effective number of threads
     *   runState,    indicating whether running, shutting down etc
     *
     * In order to pack them into one int, we limit workerCount to
     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
     * billion) otherwise representable. If this is ever an issue in
     * the future, the variable can be changed to be an AtomicLong,
     * and the shift/mask constants below adjusted. But until the need
     * arises, this code is a bit faster and simpler using an int.
     *
     * The workerCount is the number of workers that have been
     * permitted to start and not permitted to stop.  The value may be
     * transiently different from the actual number of live threads,
     * for example when a ThreadFactory fails to create a thread when
     * asked, and when exiting threads are still performing
     * bookkeeping before terminating. The user-visible pool size is
     * reported as the current size of the workers set.
     *
     * 线程池状态:
     *
     *   RUNNING:  接受新任务并处理排队的任务
     *   SHUTDOWN: 不接受新任务,但处理排队的任务
     *   STOP:     不接受新任务,不处理排队的任务,中断正在进行的任务
     *   TIDYING:  所有任务都已终止,workerCount 为零,转换为状态整理的线程将运行 terminated() 钩子方法
     *   TERMINATED: terminated() 方法执行完成
     *
     * 为了进行有序比较,这些值之间的数字顺序很重要。运行状态随时间单调地增加,但不必触及每个状态。过渡包括:
     *
     * RUNNING -> SHUTDOWN
     *   调用 shutdown(), 可能隐含在 finalize() 中
     * (RUNNING or SHUTDOWN) -> STOP
     *   调用 shutdownNow()
     * SHUTDOWN -> TIDYING
     *    当队列和线程池数量都为空时
     * STOP -> TIDYING
     *    当线程池数量为空时
     * TIDYING -> TERMINATED
     *    When the terminated() hook method has completed
     *
     * 在 awaitermination() 中等待的线程将在状态达到 TERMINATED 时返回。
     *
     * Detecting the transition from SHUTDOWN to TIDYING is less
     * straightforward than you'd like because the queue may become
     * empty after non-empty and vice versa during SHUTDOWN state, but
     * we can only terminate if, after seeing that it is empty, we see
     * that workerCount is 0 (which sometimes entails a recheck -- see
     * below).
     */
    // 初始值 : 11100000 00000000 00000000 00000000
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

    // Integer.SIZE = 32
    // COUNT_BITS = 29
    private static final int COUNT_BITS = Integer.SIZE - 3;

    // 1 << COUNT_BITS --> 00100000 00000000 00000000 00000000
    //      after   -1 --> 00011111 11111111 11111111 11111111
    // 即 int 后 29 位用于存储线程池数量
    // 即线程池最大数量为 2^29-1 ==> 5.36亿
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    // int 前 3 位用于存储 线程池数量

    // -1 ==> 11111111 11111111 11111111 11111111
    // 0 右移 29 位 = 11100000 00000000 00000000 00000000
    private static final int RUNNING    = -1 << COUNT_BITS;
    // 0 右移 29 位 = 00000000 00000000 00000000 00000000
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    // 1 右移 29 位 = 00100000 00000000 00000000 00000000
    private static final int STOP       =  1 << COUNT_BITS;
    // 2 ==> 10
    // 2 右移 29 位 = 01000000 00000000 00000000 00000000
    private static final int TIDYING    =  2 << COUNT_BITS;
    // 3 ==> 011
    // 3 右移 29 位 = 01100000 00000000 00000000 00000000
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl

    // 线程池状态
    // c & 11100000 00000000 00000000 00000000
    private static int runStateOf(int c)     { return c & ~CAPACITY; }

    // 线程池数量
    // c & 00011111 11111111 11111111 11111111
    private static int workerCountOf(int c)  { return c & CAPACITY; }

    // 逻辑或
    private static int ctlOf(int rs, int wc) { return rs | wc; }

在这里插入图片描述

在这里插入图片描述

P59_线程池状态迁移与线程创建逻辑源码分析

在这里插入图片描述

ThreadPoolExecutor 源码

    /**
     * 在将来某个时间执行给定任务。可以在新线程中或者在现有池线程中执行该任务。
     *
     * 如果无法将任务提交执行,或者因为此执行程序已关闭,或者因为已达到其容量,
     * 则该任务由当前 RejectedExecutionHandler 处理。
     *
     * @param command 要执行的任务。
     * @throws RejectedExecutionException 如果无法接收要执行的任务,
     *      则由 RejectedExecutionHandler 决定是否抛出 RejectedExecutionException
     * @throws NullPointerException 如果 command 为 null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        // 当前线程池数量 < corePoolSize
        if (workerCountOf(c) < corePoolSize) {
            // 添加一个 Worker 线程执行任务
            if (addWorker(command, true))
                return;
            // 执行任务失败(多线程提交任务),重新获取 ctl
            c = ctl.get();
        }
        // 线程池状态为 RUNNING
        // 任务放入任务队列成功
        if (isRunning(c) && workQueue.offer(command)) {
            // 重新获取 ctl
            int recheck = ctl.get();
            // 如果线程池状态不是运行状态,则将 command 从任务队列中移除(回滚)
            if (! isRunning(recheck) && remove(command))
                // 并将本任务进入拒绝策略
                reject(command);
            // 线程池数量 = 0 ???
            else if (workerCountOf(recheck) == 0)
                // 
                addWorker(null, false);
        }
        // 线程池
        else if (!addWorker(command, false))
            reject(command);
    }

P60_线程池线程创建与添加逻辑源码解析

    /**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;

                // 线程池数量 +1
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            // Worker 任务
            w = new Worker(firstTask);
            final Thread t = w.thread;

            // t != null 表示创建线程成功
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();

                        // Set containing all worker threads in pool. Accessed only when holding mainLock.
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }

                // Worker 是否添加到 workers 里
                if (workerAdded) {
                    // 启动线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {

            // 线程未启动
            if (! workerStarted)
                // 回滚
                addWorkerFailed(w);
        }
        return workerStarted;
    }

    /**
     * Rolls back the worker thread creation.
     * - removes worker from workers, if present
     * - decrements worker count
     * - rechecks for termination, in case the existence of this
     *   worker was holding up termination
     */
    private void addWorkerFailed(Worker w) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (w != null)
                workers.remove(w);
            decrementWorkerCount();
            tryTerminate();
        } finally {
            mainLock.unlock();
        }
    }
    /**
     * Class Worker mainly maintains interrupt control state for
     * threads running tasks, along with other minor bookkeeping.
     * This class opportunistically extends AbstractQueuedSynchronizer
     * to simplify acquiring and releasing a lock surrounding each
     * task execution.  This protects against interrupts that are
     * intended to wake up a worker thread waiting for a task from
     * instead interrupting a task being run.  We implement a simple
     * non-reentrant mutual exclusion lock rather than use
     * ReentrantLock because we do not want worker tasks to be able to
     * reacquire the lock when they invoke pool control methods like
     * setCorePoolSize.  Additionally, to suppress interrupts until
     * the thread actually starts running tasks, we initialize lock
     * state to a negative value, and clear it upon start (in
     * runWorker).
     */
    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

P61_线程池任务执行完整流程源码解析

P62_线程池关闭操作流程源码深入解读

P63_线程池终止方法详解及生产系统开发最佳实践

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章