详细介绍linux字符驱动相关内容

 

驱动程序:使硬件工作的软件。

linux驱动程序的分类:

字符设备驱动(重点)

网络接口驱动(重点)

块设备驱动

 

1)字符设备:

字符设备是一种按字节来访问的设备,字符驱动则负责驱动字符设备,这样的驱动通

常实现openclosereadwrite系统调用。

2)块设备:

在大部分unix系统,块设备不能按字节处理数据,只能一次传送一个或多个长度是

512字节(或一个更大的2次幂的数)的整块数据

Linux则允许块设备传送任意数目的字节

因此块和字符设备的区别:仅仅是驱动的接口函数与内核的接口函数不同

3)网络接口:

任何网络事物都通过一个接口来进行,一个接口通常是一个硬件(eth0),但它也可以

是一个纯粹的软件设备,比如回环接口(lo)。一个网络接口负责发送和接收数据报文

字符设备与块设备:随机访问?块设备随机访问,字符设备必须按顺序访问

 

驱动程序安装方式:有两种

  模块方式(已知)insmod, rmmod

直接编译进内核

 

如何直接把驱动程序(内核模块)编译进内核?

需要修改两个文件:KconfigMakefileKconfig用来产生配置菜单,到处有Kconfig):

第一步:首先把驱动程序或内核模块源文件(hello.c)放到内核源代码相应的目录下(根据

功能选择目录)(如drivers/char下)

第二步:修改Kconfig修改所放源文件目录下的Kconfig在内核源代码的顶层目录执行:

vi drivers/char/Kconfig(打开Kconfig),然后在其中加上如下两行代码(照着写):

config HELLO_WORLD

               Bool “helloworld”

第三步:通过make menuconfig ARCH=arm进入配置菜单,选中刚添加(要编译进内核)

的项。配置结果体现在(.config)中,.config文件位于内核源代码顶层目录下,通

vi .config可以查看。可以看到:CONFIG_HELLO_WORLD=y

第四步:修改Makefile修改所放源文件目录下的Makefile。照着写

        obj-$(CONFIG_HELLO_WORLD)    += hello.o  (加上这一项,hello.c)

第五步:编译内核。修改好后,回到内核源代码顶层目录执行如下命令编译内核。:

male uImage ARCH=armCROSS_COMPILE=arm-linux-

 

***************************** hello.c代码如下:**********************************

#include <linux/module.h>

#include <linux/init.h>

 

static int __init hello_init()

{

       printk("hello world!\n");

       return 0;

}

static void __exit hello_exit()

{

       printk(KERN_EMERG "hello exit!\n");

}

 

module_init(hello_init);

module_exit(hello_exit);

*****************************************************************************

编译完成启动内核的过程中,会打印出:Hello World!信息。因为执行了模块初始化函数。

__init标志表示此函数将被放置到初始化代码段;内核在启动时,会依次调用初始化代码段中的函数指针。__exit类似。

 

驱动程序使用:

linux用户程序通过设备文件(也称:设备节点)来使用驱动程序操作字符设备块设备(根据*fp找到在内核里面对应的sturct file结构,从而找到相应的readwrite函数)

网络设备没有设备文件,设备文件在dev目录下面。

1、主次设备号

字符设备通过字符设备文件来存取。字符设备文件由使用ls –l命令后输出的第一列的“c”标识。在dev目录下使用ls –l命令可以看到设备文件项中有2个数字,由逗号分隔,这些数字就是设备文件的主次设备编号。前主后次

1.1设备号的作用

思考:字符设备文件与字符设备驱动如何建立联系?——通过主设备号

设备文件所对应的主设备号和驱动程序所对应的主设备号相同的话,那么这个驱动程序就对应这个设备文件。(设备文件的主设备号通过创建设定,驱动程序通过申请获得)

主设备号:用来标识与设备文件相连的驱动程序。

次设备号:被驱动程序用来辨别操作的是哪个设备。

总结:主设备号用来反映设备类型;次设备号用来区分同类型的设备。

 

主次设备号的描述:内核描述

内核中通过类型dev_t来描述设备号,其实质是unsigned int 32位整数,其中12位为主设备号,低20位为次设备号

分离出主设备号MAJOR(dev_t dev)

分离出次设备号MINOR(dev_t dev)

定义主次设备号dev_t devno = MKDEV(mem_major, mem_minor)

 

1.2分配主设备号

Linux内核通过静态申请动态分配两种方法来给设备分配主设备号。

 

1.2.1静态申请(简单但易导致冲突)

方法如下

1、根据Documentation/deices.txt,确定一个没有使用的主设备号;

2、使用register_chrdev_region函数注册设备号。

优点:简单,

缺点:一旦驱动程序被广泛使用,这个随机选定的主设备号可能会导致设备号冲突,而使驱

动程序无法注册。

原型int register_chrdev_region(dev_t from,unsigned count,const char* name)

功能:申请使用从from开始的count个设备号(主设备号不变,次设备号增加

参数from:希望申请使用的设备号

      count:希望申请使用的设备号数目

      name:设备名(体现在 /proc/devices

 

1.2.2动态分配(简单,但无法在安装驱动前创建设备文件,因为安装前还没有分配到主设备号)

方法如下:

使用 alloc_chrdev_region 分配设备号

原型int alloc_chrdev_region(dev_t *dev,unsigned baseminor,unsigned count,const char *name)

功能:请求内核动态分配count个设备号,且次设备号从baseminor开始。

参数dev分配到的设备号位于dev指针所指向的内存中。,不需要填值,用于获取值

      baseminor:起始次设备号

      count:需要分配的设备号数目

      name:设备名(体现在 /proc/devices

优点:简单,易于驱动推广

缺点:无法在安装驱动前创建设备文件(因为安装前还没有分配到主设备号)

解决办法:安装驱动后,从/proc/devices中查询设备号,然后再创建设备文件。

1.3注销设备号(不用时应该释放这些设备号)

原型void unregister_chrdev_region(dev_t from,unsigned count)

功能:释放从from开始的count个设备号

 

2、创建设备文件——2种方法:

2.1、使用mknod命令手工创建

用法:mknod filename type major minor

参数:filename:设备文件名

type:设备文件类型c”,“b

major:主设备号

minor:次设备号

例如:mknod serial0 c 100 0 //设备文件的主次设备号是确定的,一个设备文件只能对应一个

设备。要操作哪个设备,首先要创建对应主次设备号的设备文件,再操作此设备文件。

2.2、自动创建——后面课程介绍

 

3、重要结构

Linux字符设备驱动程序设计中,有三种非常重要的内核数据结构

3.1struct file代表一个打开的文件。系统中每个打开的文件在内核空间都有一个关联的struct file。它由内核在打开文件时创建,在文件关闭后释放。(每打开一次创建一个

重要成员

loff_t f_pos /*文件读写位置*/

struct file_operations *f_op

3.2struct inode用来记录文件的物理上的信息(如存放位置、设备号等)。因此它和代表打开文件的file结构是不同的,一个文件可以对应多个file结构,但只有一个inode结构

重要成员

dev_t i_rdev:设备号  //inode代表设备文件(设备节点)?

3.3struct file_operations一个函数指针的集合(更像一个转化表)定义能在设备上进行的操作。结构中的成员指向驱动中的函数,这些函数实现一个特殊的操作,对于不支持的操作保留为NULL

struct file_operations mem_fops = {

.owner = THIS_MODULE,

.llseek = mem_seek,

.read = mem_read,

.write = mem_write,

.ioctl = mem_ioctl,

.open = mem_open,

.release = mem_release,

};

思考:应用程序如何访问驱动程序?

解析:当应用程序执行read系统调用,对设备文件进行读的时候,驱动程序就会做出mem_read函数调用。当应用程序执行write系统调用,对设备文件进行写的时候,驱动程序就会做出mem_write函数调用。把应用程序中对文件的操作转化成驱动程序中相应的函数(内核根据应用程序系统调用中传递的*fp指针找到在内核里面对应的sturct file结构,从而找到驱动程序中相应的readwrite函数)

4、设备注册

linux2.6内核中,字符设备使用struct cdev结构来描述

字符设备的注册分为如下三个步骤:

4.1、分配cdev,分配空间:分配是对于指针而言,静态的不需要分配

    struct cdev的分配可使用cedv_alloc函数来完成。

原型struct cdev *cdev_alloc(void)。分配完成后返回分配到的struct cdev函数指针

注意:如果cdev结构被定义为静态的,则不需要执行空间分配。

4.2、初始化cdev结构

    struct cdev的初始化可使用cedv_init函数来完成。

原型void cdev_init(struct cedv *cdev,const struct file_operations *fops)

参数cdev:待初始化的cdev结构

     fops:设备对应的操作函数集

4.3、添加cdev即注册字符设备驱动

struct cdev的注册可使用cedv_add函数来完成。

原型int cdev_add(struct cdev *p,dev_t dev,unsigned count)

参数p:待添加到内核的字符设备结构,要注册的字符设备

    dev:设备号,驱动程序对应的主设备号

    count:添加的设备个数

 

5、设备操作(注册完之后要实现struct file_operations结构中相关的设备操作)

1int (*open)(struct inode *,struct file *) 对应open方法

在设备文件上的第一操作,可以不实现此方法,没有(即该项为NULL)时则认为永

远打开成功。

2void (*release)(struct inode *,struct file *) 对应close方法

    当设备文件被关闭时调用这个操作。release也可以没有。

3ssize_t(*read)(struct file *,char __user *,size_t,loff_t *)

    从设备中读取数据

4ssize_t(*write)(struct file *,const char __user *,size_t,loff_t *)

    向设备发送数据

5unsigned int (*poll)(struct file *,struct poll_table_struct *)

对应select系统调用

6int (*ioctl)(struct inode *,struct file *,unsigned int,unsigned long)

      控制设备

7int (*mmap)(struct file *,struct vm_area_struct *)

    将设备映射到进程虚拟地址空间中。

8off_t(*llseek)(struct file *,loff_t,int)

    修改文件的当前读写位置,并将新位置作为返回值。

 

open方法:

  open方法是驱动程序用来为以后的操作完成初始化准备工作的。在大部分驱动程序中,open完成如下工作:

初始化设备,设置寄存器等。

标明次设备号,这样驱动程序才知道操作哪个设备。/*将设备描述结构指针赋值给文

件私有数据指针,然后在读写操作函数中就能知道该操作哪个设备*/

release方法:

release方法的作用正好与open相反。这个设备方法有时也称为close,它应该:

关闭设备

 

读和写方法:

读和写方法都完成类似的工作:从设备中读取数据到用户空间;将数据传递给驱动程序。它们的原型也相当类似:

原型ssize_t xxx_read(struct file *filp,char __user *buff,size_t count,loff_t *offp);

原型ssize_t xxx_write(struct file *filp,char __user *buff,size_t count,loff_t *offp);

参数:对于这两个方法,其参数含义如下:

filp是文件指针,内核构造后传给此函数的

count是请求传输的数据量。来自用户空间

buff参数指向数据缓存。来自用户空间

offp支出文件当前的访问位置。来自内核

 

问题:readwrite方法的buff参数是用户空间指针。因此,他不能被内核代码直接引用

理由如下:用户控件的指针在内核空间可能根本是无效的——没有那个地址的映射。

 

解决:内核提供了专门的函数用于访问用户空间的指针,例如:

写:int copy_from_user(void *to,const void __user *from,int n)

    数据从用户空间放到设备里面去

读:int copy_to_user(void __user *to,const void *from,int n)

从设备里面读,数据从设备到用户空间,

 

6、设备注销:

当不再使用驱动程序的时候应该把驱动程序注销掉。

字符设备的注销使用cdev_del函数来完成。

原型int cdev_del(struct cdev *p)

参数p:要注销的字符设备结构

 

[4-6-3]字符设备驱动程序实例分析 memdev.c  memdev.h  app-mem.c

[4-6-4]竞争与互斥

4.1 驱动调试技术:

对于驱动程序设计来说,核心问题之一就是如何完成调试。

当前常用的驱动调试技术可分为:

打印调试:printk

调试器调试:gdb

查询调试:proc文件系统

合理使用printk

应该使用全局打开或关闭printk打印的宏开关来控制是否使用printk

#ifdef PDEBUG

#define PLOG(fmt,args…) printk(KERN_DEBUG “scull:”fmt,##args)

#else

#define PLOG(fmt,args…)  /* do nothing */

#endif

Makefile做如下修改:

DEBUG=y

ifeq($(DEBUG),y)

DEBFLAGS = -O2 –g –DPDEBUG

else

DEBFLAGS = -O2

endif

CFLAFS +=$(DEBFLAGS)

 

4.2 并发控制:

4.2.1 概念:并发与竞态

并发:多个执行单元同时被执行

竞态:并发的执行单元对共享资源(硬件资源和软件上的全局变量等)的访问导致的竞争状态

例:

if(copy_from_user(&(dev->data[pos]),buf,count))

   ret = -EFAULT;

   goto out;

假设有2个进程试图同时向一个设备的相同位置写入数据,就会造成数据混乱。

4.2.2 并发控制技术:

处理并发的常用技术是加锁或者互斥,即确保在任何时候只有一个执行单元可以操作共享资源。在linux内核中主要通过semaphore机制spin_lock机制实现。

4.2.2.1 信号量:

      linux内核的信号量在概念和原理上与用户态的信号量是一样的,但是它不能在内核之外使用,它是一种睡眠锁。如果有一个任务想要获得已经被占用的信号量时,信号量会将这个进程放入一个等待队列,然后让其睡眠。当持有信号量的进程将信号释放以后,处于等待队列中的任务将被唤醒,并让其获得信号量。

信号量在创建时需要设置一个初始值,表示允许可以有几个任务同时访问该信号量保护的资源,初始值为1就变成互斥锁(Mutex,即同时只能有一个任务可以访问信号量保护的资源。

当任务访问完被信号量保护的共享资源后,就必须释放信号量,释放信号量通过把信号量的值1实现,如果释放后信号量的值为非正数,表明有任务等待当前信号量,因此要唤醒等待该信号量的任务

信号量的使用

       信号量的实现也是与体系结构相关的,定义在<asm/semaphonre.h>中,struct semaphore类型用来表示信号量。

1、定义信号量

struct semaphore sem;

2、初始化信号量

void sema_init(struct semaphore *sem,int val)

该函数用于初始化设置信号量的初值,它设置信号量sem的值为val

void init_MUTEX(struct semaphore *sem)

该函数用于初始化一个互斥锁,即把信号量sem的值设置为1

互斥锁的值只能为0或者1

void init_MUTEX_LOCKED(struct semaphore *sem)

该函数也用于初始化一个互斥锁,但它把信号量sem的值设置为0

即一开始就处在已锁状态。

定义与初始化的工作可以由如下宏一步完成:

DECLARE_MUTEX(name)

定义一个信号量name,并初始化它的值为1

DECLARE_MUTEX_LOCKED(name)

定义一个信号量name,但把它的初始值设置为0,即锁在创建时就处在已锁状态。

3、获取信号量

void down(struct semaphore *sem)

获取信号量sem,可能会导致进程睡眠,因此不能在中断上下文使用该函数该函数将

sem的值1如果信号量sem的值非负,就直接返回,否则调用者将被挂起,直到

别的任务释放该信号量才能继续运行。

int down_interruptible(struct semaphore *sem)

   获取信号量sem。如果信号量不可用,进程将被置为TASK_INTERRUPTIBLE类型的睡

眠状态。该函数由返回值来区分是正常返回还是被信号中断返回,如果返回0,表示获

得的信号量正常返回,如果被信号打断,返回-EINTR

down_killable(struct semaphore *sem)

   获取信号量sem。如果信号量不可用,进程将被置为TASK_KILLABLE类型的睡眠状态。

注:down()函数现已不建议继续使用。

建议使用down_killable()或down_interruptible()函数

4、释放信号量

   void up(struct semaphore *sem)

   该函数释放信号量sem,即sem的值加1如果sem的值为非正数,表明有任务在等

待该信号量,因此唤醒这些等待者

 

4.2.2.2 自旋锁

自旋锁最多只能被一个可执行单元持有。自旋锁不会引起调用者睡眠,如果有一个执行线程试图获得一个已经被持有的自旋锁,那么线程就会一直进行忙循环,一直等待下去,在那里看是否该自旋锁的保持者已经释放了锁,“自旋”就是这个意思。

自旋锁的使用

1、初始化自旋锁

spin_lock_init(x)

该宏用于初始化自旋锁x,自旋锁在使用前必须先初始化。

2、获取自旋锁

spin_lock(lock)

获取自旋锁lock,如果成功,立即获得锁,并马上返回,否则它将一直自旋在那里,直

到该自旋锁的保持者释放。

spin_trylock(lock)

试图获取自旋锁lock,如果能立即获得锁,并返回真,否则立即返回假。它不会一直等

待被释放。

3、释放自旋锁

spin_unlock(lock)

释放自旋锁lock,它与spin_trylockspin_lock配对使用。

 

4.2.2.3 信号量与自旋锁对比

信号量可能允许有多个持有者,而自旋锁在任何时候只能允许有一个持有者。当然也有

信号量叫互斥信号量(只有一个持有者),允许有多个持有者的信号量叫计数信号量

 

信号量适合于保持时间较长的情况;而自旋锁适合于保持时间非常短的情况,在实际应

用中自旋锁控制的代码只有几行,而持有自旋锁的时间也一般不会超过两次上下文切换

的时间,因为线程一旦要进行切换,就至少花费切出切入两次,自旋锁的占用时间如果

远远长于两次上下文切换,我们就应该选择信号量。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章