達叔機器學習筆記1_邏輯迴歸建立一般流程

碎碎念:達叔說 邏輯迴歸相當於小型的神經網絡 就是沒有隱含層嘛

先簡單介紹一下需要做的事情  共分爲7步,接下來將達叔作業裏的所有程序 粘貼出來

1.,導入數據集,查看數據格式

操作:train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()

           train_set_x_orig.shape  

一般會得到四個值(n,num_px,num_px,3) n 是訓練集的個數,如 100張貓咪的訓練照片, num_px 是圖片的長寬?比如 64,64  代表一張64×64的圖片 3 代表 RGB三個值

2.reshape

操作:train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T

X_flatten=X.shape(X.shape[0],-1).T  此操作可以將(a,b,c,d)的矩陣轉化爲(b*c*d,a)的二維矩陣

將(n,num_px,num_px,3)維度的數據reshape成(num_px×num_px×3,n)樣子的數據,如(12288,n)12288行,n列。每一列是一張圖片,每張圖片有12288個特徵。n代表 共有n張圖片。這樣所有訓練集的維度就是一樣的了

同時不要忘記對測試集也進行相同的操作

3.預處理(歸一化)

操作:train_set_x = train_set_x_flatten/255.

一般來說 預處理包含center 去中心化和standardize標準化兩步,但是因爲這裏每個12288個值,其實每一值代表圖片上64×64個點中的RGB中的一個值,所以每個值得範圍是(0,255)。所以每個值除以255就ok了

4.初始化參數

操作:w = np.zeros((dim, 1))

           b = 0

一般來說有多少個輸入特徵,行數 這裏是12288 一般就有多少個w

5.代價函數最小化(利用梯度下降法)

參考公式

操作: m = X.shape[1]

            A = sigmoid(np.dot(w.T, X) + b) # compute activation    因爲w是一個與X的行數一樣,一列的向量 ,所以求點積時,需要轉置再求

            cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))        # compute cost

            dw = 1 / m * np.dot(X, (A - Y).T)

            db = 1 / m * np.sum(A - Y)

            w = w - learning_rate * dw

            b = b - learning_rate * db

6.更換學習率 α 畫圖觀察不同學習率下的 cost變化情況 得到算法的正確率

操作:learning_rates = [0.01, 0.001, 0.0001]

           plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"])

7.得出結論

 

 

一步一步定義函數,然後定義模型,在模型中調用函數,畫圖觀察cost  確定合適的學習率α

程序部分

#邏輯迴歸的整個過程


import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy                                 
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
#1 導入數據 


train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
#1 檢查數據的shape
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
#2.reshape 統一shape


train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
#3 預處理 數據標準化


train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.
#4分別定義了 sigmoid函數 sigmoid導數 初始化參數 正向傳播 梯度下降法等函數


def sigmoid(z):
    s = 1 / (1 + np.exp(-z))
    return s
def sigmoid_derivative(x):
    s = sigmoid(x)
    ds = s * (1 - s)
    return ds      
def initialize_with_zeros(dim):
    w = np.zeros((dim, 1))
    b = 0
    return w, b
def propagate(w, b, X, Y):       
    m = X.shape[1]
    A = sigmoid(np.dot(w.T, X) + b)            # compute activation
    cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A)) 
    dw = 1 / m * np.dot(X, (A - Y).T)
    db = 1 / m * np.sum(A - Y)
    cost = np.squeeze(cost)
    grads = {"dw": dw,
             "db": db}
    return grads, cost     
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False): 
#通過梯度下降法實現w,b的更新
    costs = [] 
    for i in range(num_iterations):
         # Cost and gradient calculation (≈ 1-4 lines of code)
        grads, cost = propagate(w, b, X, Y)  
        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]
        w = w - learning_rate * dw
        b = b - learning_rate * db
        if i % 100 == 0:
            costs.append(cost)
        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
    params = {"w": w,
              "b": b}
    
    grads = {"dw": dw,
             "db": db}   
    return params, grads, costs
# 定義了 查看算法正確率的函數
def predict(w, b, X):    
    m = X.shape[1]
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1)        
    A = sigmoid(np.dot(w.T, X) + b)   
    for i in range(A.shape[1]):
        
        # Convert probabilities A[0,i] to actual predictions p[0,i]       
        if A[0, i] <= 0.5:
            Y_prediction[0, i] = 0
        else:
            Y_prediction[0, i] = 1    

    return Y_prediction
#5 將以上所有函數結合在一起形成一個model 來實現邏輯迴歸


def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
#print_cost -- Set to true to print the cost every 100 iterations
    D={}
    w, b = initialize_with_zeros(X_train.shape[0])     
    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)    
    w = parameters["w"]
    b = parameters["b"]    
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test))))
   
    D={"costs": costs,
        "Y_prediction_test": Y_prediction_test, 
        "Y_prediction_train": Y_prediction_train, 
        "w" : w, 
        "b" : b,
        "learning_rate" : learning_rate,
        "num_iterations": num_iterations}                          
    return D
#5 調用model函數 求解 一些列值


d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

#6.可視化 把學習率爲0.05 情況下的cost 圖畫出來


costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()
#更換不同學習率 查看不同學習率下的cost變化
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')
for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章