【力扣 0399】221. 最大正方形

221. 最大正方形

在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

示例 1:


输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:


输入:matrix = [["0","1"],["1","0"]]
输出:1
示例 3:

输入:matrix = [["0"]]
输出:0
 

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j] 为 '0' 或 '1'

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/maximal-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

可以使用动态规划降低时间复杂度。我们用 \textit{dp}(i, j)dp(i,j) 表示以 (i, j)(i,j) 为右下角,且只包含 11 的正方形的边长最大值。如果我们能计算出所有 \textit{dp}(i, j)dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 11 的正方形的边长最大值,其平方即为最大正方形的面积。

那么如何计算 \textit{dp}dp 中的每个元素值呢?对于每个位置 (i, j)(i,j),检查在矩阵中该位置的值:

  • 如果该位置的值是 00,则 \textit{dp}(i, j) = 0dp(i,j)=0,因为当前位置不可能在由 11 组成的正方形中;
  • 如果该位置的值是 11,则 \textit{dp}(i, j)dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 \textit{dp}dp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 11,状态转移方程如下:
dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1

如果读者对这个状态转移方程感到不解,可以参考 1277. 统计全为 1 的正方形子矩阵的官方题解,其中给出了详细的证明。

此外,还需要考虑边界条件。如果 ii 和 jj 中至少有一个为 00,则以位置 (i, j)(i,j) 为右下角的最大正方形的边长只能是 11,因此 \textit{dp}(i, j) = 1dp(i,j)=1。

以下用一个例子具体说明。原始矩阵如下。

0 1 1 1 0
1 1 1 1 0
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1

 

对应的 \textit{dp}dp 值如下。

0 1 1 1 0
1 1 2 2 0
0 1 2 3 1
0 1 2 3 2
0 0 1 2 3

下图也给出了计算 \textit{dp}dp 值的过程。

代码实现:

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) 
    {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> dp(m, vector<int>(n));
        int ans = 0;
        for(int i = 0; i < m; ++i)
        {
            for(int j = 0; j < n; ++j)
            {
                if(matrix[i][j] == '0')
                    dp[i][j] = 0;
                else if(i == 0 || j == 0)
                    dp[i][j] = 1;
                else
                    dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
            ans = max(ans, dp[i][j]);
            }
        }
        return ans * ans;
    }
};

参考资料

1. 最大正方形

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章