Java官方筆記13集合

Storing Data

The Collections Framework is the most widely used API of the JDK.

集合不是數據類型,它是JDK的API,可以用來存儲數據等,相當於數據結構。

the Collections Framework is a set of interfaces that models different way of storing data in different types of containers. Then the Framework provides at least one implementation for each interface.

There are two main categories of interfaces in the Collections Framework: collections and maps.(所以我猜想Python也是基於這樣的考慮,設計了List和Dict,並作爲Python基本數據類型,實際編碼中要用到的也主要是這兩類)

That makes two main categories, Collection and Map, a subcategory, Queue, and a side category, Iterator.

a collection is an object,but an array is not an object in Java.

Collection Hierarchy

The Iterable Interface is the super interface of the Collection interface, and thus of all the interfaces of this hierarchy. An object that implements Iterable is an object that you can iterate over.

the Collection interface also models different ways of accessing its elements:

  • you can iterate over the elements of a collection, through the use of an iterator;
  • you can create a stream on these elements, that can be parallel.

List是有序列表

The difference between a List of elements and a Collection of elements, is that a List remembers in what order its elements have been added. If you iterate over the elements of a list, the first element you will get is the first that has been added.

You do not have this guarantee with a plain Collection nor for a Set.

List跟Collection的區別是,增加了index。

Set跟Collection的區別是,不允許重複。

Set是無序的,SortedSet是排序過的,SortedSet的排序是指從小到大排列,跟List的有序不一樣,List有序是指的先添加排前面,不一定是最小的。

Storing Elements

Collection<String> strings = new ArrayList<>();
strings.add("one");
strings.add("two");
System.out.println("strings = " + strings);
strings.remove("one");
System.out.println("strings = " + strings);
  • containsAll(): defines the inclusion

    Collection<String> strings = new ArrayList<>();
    strings.add("one");
    strings.add("two");
    strings.add("three");
    
    Collection<String> first = new ArrayList<>();
    strings.add("one");
    strings.add("two");
    
    Collection<String> second = new ArrayList<>();
    strings.add("one");
    strings.add("four");
    
    System.out.println("Is first contained in strings? " + strings.containsAll(first));
    System.out.println("Is second contained in strings? " + strings.containsAll(second));
    
  • addAll(): defines the union 並集

    Getting a true value does not mean that all the elements of the other collection have been added; it means that at least one has been added.

    Collection<String> strings = new ArrayList<>();
    strings.add("one");
    strings.add("two");
    strings.add("three");
    
    Collection<String> first = new ArrayList<>();
    first.add("one");
    first.add("four");
    
    boolean hasChanged = strings.addAll(first);
    
    System.out.println("Has strings changed? " + hasChanged);
    System.out.println("strings = " + strings);
    
  • removeAll(): defines the complement

    Collection<String> strings = new ArrayList<>();
    strings.add("one");
    strings.add("two");
    strings.add("three");
    
    Collection<String> toBeRemoved = new ArrayList<>();
    toBeRemoved.add("one");
    toBeRemoved.add("four");
    
    boolean hasChanged = strings.removeAll(toBeRemoved);
    
    System.out.println("Has strings changed? " + hasChanged);
    System.out.println("strings = " + strings);
    
  • retainAll(): defines the intersection 交集

    Collection<String> strings = new ArrayList<>();
    strings.add("one");
    strings.add("two");
    strings.add("three");
    
    Collection<String> toBeRetained = new ArrayList<>();
    toBeRetained.add("one");
    toBeRetained.add("four");
    
    boolean hasChanged = strings.retainAll(toBeRetained);
    
    System.out.println("Has strings changed? " + hasChanged);
    System.out.println("strings = " + strings);
    

注意上面的並集和交集,Collection本來就是集合,所以能夠求並集和交集是理所當然的。

isEmpty()、clear()

Collection<String> strings = new ArrayList<>();
strings.add("one");
strings.add("two");
if (!strings.isEmpty()) {
    System.out.println("Indeed strings is not empty!");
}
System.out.println("The number of elements in strings is " + strings.size());
Collection<String> strings = new ArrayList<>();
strings.add("one");
strings.add("two");
System.out.println("The number of elements in strings is " + strings.size());
strings.clear();
System.out.println("After clearing it, this number is now " + strings.size());

size(),Collection相當於容器,用size。而array和String,相當於序列,用length。

toArray

將Collection轉爲array:

①無入參:

Collection<String> strings = ...; // suppose you have 15 elements in that collection

String[] tabString1 = strings.toArray(new String[] {}); // you can pass an empty array
String[] tabString2 = strings.toArray(new String[15]);   // or an array of the right size

②傳參

Collection<String> strings = List.of("one", "two");

String[] largerTab = {"three", "three", "three", "I", "was", "there"};
System.out.println("largerTab = " + Arrays.toString(largerTab));

String[] result = strings.toArray(largerTab);
System.out.println("result = " + Arrays.toString(result));

System.out.println("Same arrays? " + (result == largerTab));
Collection<String> strings = List.of("one", "two");

String[] zeroLengthTab = {};
String[] result = strings.toArray(zeroLengthTab);

System.out.println("zeroLengthTab = " + Arrays.toString(zeroLengthTab));
System.out.println("result = " + Arrays.toString(result));

③簡寫

Collection<String> strings = ...;

String[] tabString3 = strings.toArray(String[]::new);

Predicate + removeIf 實現有條件的刪除,比如刪除null和empty的元素:

Predicate<String> isNull = Objects::isNull;
Predicate<String> isEmpty = String::isEmpty;
Predicate<String> isNullOrEmpty = isNull.or(isEmpty);

Collection<String> strings = new ArrayList<>();
strings.add(null);
strings.add("");
strings.add("one");
strings.add("two");
strings.add("");
strings.add("three");
strings.add(null);

System.out.println("strings = " + strings);
strings.removeIf(isNullOrEmpty);
System.out.println("filtered strings = " + strings);

Iterating

for-each

Collection<String> strings = List.of("one", "two", "three");

for (String element: strings) {
    System.out.println(string);
}

Iterator

Collection<String> strings = List.of("one", "two", "three", "four");
for (Iterator<String> iterator = strings.iterator(); iterator.hasNext();) {
    String element = iterator.next();
    if (element.length() == 3) {
        System.out.println(element);
    }
}

List

the List interface has 2: ArrayList and LinkedList. As you may guess, the first one is built on an internal array, and the second on a doubly-linked list.

Iterating over the elements of an ArrayList is much faster that over the elements of a LinkedList.
There are still cases where a linked list is faster than an array. A doubly-linked list can access its first and last element faster than an ArrayList can. This is the main use case that makes LinkedList better than ArrayList. So if your application needs a Last In, First Out (LIFO, covered later in this tutorial) stack, or a First In, First Out (FIFO, also covered later) waiting queue, then choosing a linked list is probably your best choice.

注意,鏈表在插入和刪除的速度優勢已經不在,因爲現代硬件、CPU緩存和指針追蹤已經很強大。

index

  • add(index, element): inserts the given object at the index, adjusting the index if there are remaining elements
  • get(index): returns the object at the given index
  • set(index, element): replaces the element at the given index with the new element
  • remove(index): removes the element at the given index, adjusting the index of the remaining elements.

The methods indexOf(element) and lastIndexOf(element) return the index of the given element in the list, or -1 if the element is not found.

subList:

List<String> strings = new ArrayList<>(List.of("0", "1", "2", "3", "4", "5"));
System.out.println(strings);
strings.subList(2, 5).clear();
System.out.println(strings);

addAll(int index, Collection collection)

ListIterator

The ListIterator interface extends the regular Iterator that you already know. It adds several methods to it.

List<String> numbers = Arrays.asList("one", "two", "three");
for (ListIterator<String> iterator = numbers.listIterator(); iterator.hasNext();) {
    String nextElement = iterator.next();
    if (Objects.equals(nextElement, "two")) {
        iterator.set("2");
    }
}
System.out.println("numbers = " + numbers);

Set

The Set interface does not bring any new method to the Collection interface. The Collections Framework gives you one plain implementation of the Set interface: HashSet. Internally, a HashSet wraps an instance of HashMap.

List<String> strings = List.of("one", "two", "three", "four", "five", "six");
Set<String> set = new HashSet<>();
set.addAll(strings);
set.forEach(System.out::println);

The SortedSet interface adds new methods to Set.

SortedSet<String> strings = new TreeSet<>(Set.of("a", "b", "c", "d", "e", "f"));
SortedSet<String> subSet = strings.subSet("aa", "d");
System.out.println("sub set = " + subSet);

注意,subSet僅僅相當於視圖。No copy is made, meaning that any change you make to these subsets will be reflected in the set, and the other way round.

NavigableSet

Some methods are overloaded by NavigableSet.

  • headSet()headSet(), and headSet() may take a further boolean arguments to specify whether the limits (toElement or fromElement) are to be included in the resulting subset.

Other methods have been added.

  • ceiling(element), and floor(element) return the greatest element lesser or equal than, or the lowest element greater or equal than the provided element. If there is no such element then null is returned
  • floor(element), and higher(element) return the greater element lesser than, or the lowest element greater than the provided element. If there is no such element then null is returned.
  • pollFirst(), and pollLast() return and removes the lowest or the greatest element of the set.

Furthermore, NavigableSet also allows you to iterate over its elements in descending order. There are two ways to do this.

  • You can call descendingIterator(): it gives you a regular Iterator that traverses the set in the descending order.
  • You can also call descendingSet(). What you get in return is another NavigableSet that is a view on this set and that makes you think you have the same set, sorted in the reversed order.
NavigableSet<String> sortedStrings = new TreeSet<>(Set.of("a", "b", "c", "d", "e", "f"));
System.out.println("sorted strings = " + sortedStrings);
NavigableSet<String> reversedStrings = sortedStrings.descendingSet();
System.out.println("reversed strings = " + reversedStrings);

Factory Methods

Java SE 9

List<String> stringList = List.of("one", "two", "three");
Set<String> stringSet = Set.of("one", "two", "three");

Java SE 10

Collection<String> strings = Arrays.asList("one", "two", "three");

List<String> list = List.copyOf(strings);
Set<String> set = Set.copyOf(strings);

Arrays

The Collections Framework has a class called Arrays with about 200 methods to handle arrays. Most of them are implementing various algorithms on arrays, like sorting, merging, searching.

Collections

The Collections Framework comes with another factory class: Collections, with a set of method to manipulate collections and their content.

Finding a Sublist in a List

Two methods locate a given sublist in a bigger list:

Changing the Order of the Elements of a List

  • sort() sorts the list in place. This method may take a comparator as an argument. As usual, if no comparator is provided, then the elements of the list must be comparable. If a comparator is provided, then it will be used to compare the elements. Starting with Java SE 8, you should favor the sort() method from the Listinterface.
  • shuffle() randomly shuffles the elements of the provided list. You can provide yout instance of Random if you need a random shuffling that you can repeat.
  • rotate() rotates the elements of the list. After a rotation the element at index 0 will be found at index 1 and so on. The last elements will be moved to the first place of the list. You can combine subList() and rotate() to remove an element at a given index and to insert it in another place in the list.
  • reverse(): reverse the order of the elements of the list.
  • swap(): swaps two elements from the list. This method can take a list as an argument, as well as a plain array.

Stacks and Queues

Stacks are also called LIFO stacks, where LIFO stands for Last In, First Out. Queues are known as FIFO: First In First Out.

These structures are very simple and gives you three main operations.

  • push(element): adds an element to the queue, or the stack
  • pop(): removes an element from the stack, that is, the youngest element added
  • poll(): removes an element from the queue, that is, the oldest element added
  • peek(): allows you to see the element you will get with a pop() or a poll(), but without removing it from the queue of the stack.

Queues and Stacks

  • the Queue interface models a queue;
  • the Deque interface models a double ended queue (thus the name). You can push, pop, poll and peek elements on both the tail and the head of a Deque, making it both a queue and a stack.

Collection沒有Stack接口,棧是通過Deque來定義的。

Implementing Queue and Deque

  • ArrayDeque: which implements both. This implementation is backed by an array. The capacity of this class automatically grows as elements are added. So this implementation always accepts new elements.
  • LinkedList: which also implements both. This implementation is backed by a linked list, making the access to its first and last element very efficient. A LinkedList will always accept new elements.
  • PriorityQueue: that only implements Queue. This queue is backed by an array that keeps its elements sorted by their natural order or by an order specified by a Comparator. The head of this queue is always the least element of the queue with respect to the specified ordering. The capacity of this class automatically grows as elements are added.

Maps

implementations:

  • HashMap

  • LinkedHashMap is a HashMap with an internal structure to keep the key-value pairs ordered. Iterating on the keys or the key-value pairs will follow the order in which you have added your key-value pairs.

    這裏注意,HashMap是無序的,LinkedHashMap是有序的。

  • IdentityHashMap is a specialized Map that you should only be used in very precise cases. This implementation is not meant to be generally used in application. Instead of using equals() and hashCode() to compare the key objects, this implementation only compares the references to these keys, with an equality operator (==). Use it with caution, only if you are sure this is what you need.

Java SE 9

Map<Integer, String> map = 
    Map.of(
        1, "one", 
        2, "two",
        3, "three"
    );

The Map defines a member interface: Map.Entry to model a key-value pair. This interface defines three methods to access the key and the values:

putIfAbsent(),如果是null,會替換爲默認值:

for (String key : map.keySet()) {
    map.putIfAbsent(key, -1);
}

如果value是null,可能會報錯,比如:

Map<String, Integer> map = new HashMap<>();

map.put("one", 1);
map.put("two", null);
map.put("three", 3);
map.put("four", null);
map.put("five", 5);

for (int value : map.values()) {  // 這裏是int
    System.out.println("value = " + value);  // Integer拆包爲int時會報NPE
}

getOrDefault(),如果沒有key,返回默認值:

Map<Integer, String> map = new HashMap<>();

map.put(1, "one");
map.put(2, "two");
map.put(3, "three");

List<String> values = new ArrayList<>();
for (int i = 0; i < 5; i++) {
    values.add(map.getOrDefault(key,"UNDEFINED"));
}

System.out.println("values = " + values);

流式寫法:

List<String> values =
    IntStream.range(0, 5)
        .mapToObj(key -> map.getOrDefault(key, "UNDEFINED"))
        .collect(Collectors.toList());

System.out.println("values = " + values);

remove(key),remove後返回value,可能爲null。

remove(key, value),remove時先判斷value存在才移除,返回boolean,true if the key/value pair was removed from the map。

containsKey(key) and containsValue(value) Both methods return true if the map contains the given key or value.

putAll(otherMap) If some keys are present in both maps, then the values of otherMap will erase those of this map.(並集)

  • keySet(): returns an instance of Set, containing the keys defined in the map
  • entrySet(): returns an instance of Set<Map.Entry>, containing the key/value pairs contained in the map
  • values(): returns an instance of Collection, containing the values present in the map.

遍歷推薦使用以下方式:

for (Map.Entry<Integer, String> entry : map.entrySet()) {
    System.out.println("entry = " + entry);
}

Lambda Expressions

Map<Integer, String> map = new HashMap<>();
map.put(1, "one");
map.put(2, "two");
map.put(3, "three");

map.forEach((key, value) -> System.out.println(key + " :: " + value));
Map<Integer, String> map = new HashMap<>();

map.put(1, "one");
map.put(2, "two");
map.put(3, "three");

map.replaceAll((key, value) -> value.toUpperCase());
map.forEach((key, value) -> System.out.println(key + " :: " + value));

compute

The put() methods return the previous value, whereas the compute() methods return the new value.

List<String> strings = List.of("one", "two", "three", "four", "five", "six", "seven");
Map<Integer, List<String>> map = new HashMap<>();
for (String word: strings) {
    int length = word.length();
    if (!map.containsKey(length)) {
        map.put(length, new ArrayList<>());
    }
    map.get(length).add(word);
}

map.forEach((key, value) -> System.out.println(key + " :: " + value));

使用putIfAbsent優化:

for (String word: strings) {
    int length = word.length();
    map.putIfAbsent(length, new ArrayList<>());
    map.get(length).add(word);
}

使用computeIfAbsent優化:

for (String word: strings) {
    int length = word.length();
    map.computeIfAbsent(length, key -> new ArrayList<>())
       .add(word);
}

merge

List<String> strings = List.of("one", "two", "three", "four", "five", "six", "seven");
Map<Integer, String> map = new HashMap<>();
for (String word: strings) {
    int length = word.length();
    map.merge(length, word, 
              (existingValue, newWord) -> existingValue + ", " + newWord);
}

map.forEach((key, value) -> System.out.println(key + " :: " + value));

SortedMap and NavigableMap

SortedMap<Integer, String> map = new TreeMap<>();
map.put(1, "one");
map.put(2, "two");
map.put(3, "three");
map.put(5, "five");
map.put(6, "six");

SortedMap<Integer, String> headMap = map.headMap(3);
headMap.put(0, "zero"); // this line is ok
headMap.put(4, "four"); // this line throws an IllegalArgumentException

Here is the code of the add(element) of the HashSet class:

private transient HashMap<E,Object> map;
private static final Object PRESENT = new Object();

public boolean add(E e) {
    return map.put(e, PRESENT)==null;
}

What you can see is that in fact, a hashset stores your object in a hashmap (the transient keyword is not relevant). Your objects are the keys of this hashmap, and the value is just a placeholder, an object with no significance.

hashset 是用hashmap來存的,所以最好不要更新hashset的值(也就是hashmap的key),否則會有意想不到的Bug。

參考資料:

The Collections Framework https://dev.java/learn/api/collections-framework/

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章