tensorflow實現簡單卷積網絡進行mnist分類

所有代碼數據可在百度雲下載:

鏈接: https://pan.baidu.com/s/1c31hKLM 密碼: 4tpm

所有涉及tensorflow API用法的,均可查看https://tensorflow.google.cn/api_docs/

下面的代碼實現了一個簡單的卷積神經網絡,來處理MNIST手寫數字識別問題。

import input_data
import tensorflow as tf
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
os.environ['CUDA_DEVICE_VISIBLE'] = '3'


def deepnn(x):

  with tf.name_scope('reshape'):
    x_image = tf.reshape(x, [-1, 28, 28, 1])

  # First convolutional layer - maps one grayscale image to 32 feature maps.
  with tf.name_scope('conv1'):
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

  # Pooling layer - downsamples by 2X.
  with tf.name_scope('pool1'):
    h_pool1 = max_pool_2x2(h_conv1)

  # Second convolutional layer -- maps 32 feature maps to 64.
  with tf.name_scope('conv2'):
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

  # Second pooling layer.
  with tf.name_scope('pool2'):
    h_pool2 = max_pool_2x2(h_conv2)

  # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
  # is down to 7x7x64 feature maps -- maps this to 1024 features.
  with tf.name_scope('fc1'):
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

  # Dropout - controls the complexity of the model, prevents co-adaptation of
  # features.
  with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

  # Map the 1024 features to 10 classes, one for each digit
  with tf.name_scope('fc2'):
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])

    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
  return y_conv, keep_prob


def conv2d(x, W):
  """conv2d returns a 2d convolution layer with full stride."""
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
  """max_pool_2x2 downsamples a feature map by 2X."""
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')


def weight_variable(shape):
  """weight_variable generates a weight variable of a given shape."""
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)


def bias_variable(shape):
  """bias_variable generates a bias variable of a given shape."""
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)


def main(_):
  # Import data
  mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

  # Create the model
  x = tf.placeholder(tf.float32, [None, 784])

  # Define loss and optimizer
  y_ = tf.placeholder(tf.float32, [None, 10])

  # Build the graph for the deep net
  y_conv, keep_prob = deepnn(x)

  with tf.name_scope('loss'):
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_,
                                                            logits=y_conv)
  cross_entropy = tf.reduce_mean(cross_entropy)

  with tf.name_scope('adam_optimizer'):
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

  with tf.name_scope('accuracy'):
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    correct_prediction = tf.cast(correct_prediction, tf.float32)
  accuracy = tf.reduce_mean(correct_prediction)


  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i % 2000 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x: batch[0], y_: batch[1], keep_prob: 1.0})
        print('step %d, training accuracy %g' % (i, train_accuracy))
        print('test accuracy %g' % accuracy.eval(feed_dict={
            x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.6})

if __name__ == '__main__':
  tf.app.run(main=main)

逐個解釋一下里面一些比較陌生的用法:

tf.name_scope

tf.namescope通常和tf.variable_scope、tf.get_variable_scope一起使用,主要是爲了聲明變量的作用域:

import tensorflow as tf
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'


var1 = tf.Variable(tf.zeros([2,2]))
with tf.name_scope('scope1'):
    var2 = tf.Variable(tf.zeros([2,2]))
    # 取消作用域
    with tf.name_scope(None):
        var3 = tf.Variable(tf.zeros([2,2]))
with tf.name_scope('scope1'):
    var4 = tf.Variable(tf.zeros([2,2]))
print(var1.name,'\n', var2.name,'\n', var3.name,
    '\n', var4.name)

打印結果如下:

Variable:0 
scope1/Variable:0 
Variable_1:0 
scope1_1/Variable:0

tf.reshape

# x_image = tf.reshape(x, [-1, 28, 28, 1])
reshape(
    tensor,
    shape,
    name=None
)

-1表示該維自動計算,並保證總的元素數量不變。

tf.nn.conv2d

conv2d(
    input,
    filter,
    strides,
    padding,
    use_cudnn_on_gpu=True,
    data_format='NHWC',
    name=None
)
  • input:4D向量,必須是half或者float32類型。維度順序由data_format決定。
  • filter:4D向量,[filter_height, filter_width, in_channels, out_channels]
  • strides:1D向量,長度爲4,分別表示4個維度的滑動步長。維度順序由data_format決定。
  • padding:’SAME’或者’VALID’。’VALID’表示不padding,因此有可能丟棄一部分邊緣數據;’SAME’表示自動補0,具體左右補多少可參考官網卷積的具體計算。
  • data_format:’NHWC’或者’NCHW’,默認’NHWC’表示[batch, height, width, channels]。

tf.nn.max_pool

max_pool(
    value,
    ksize,
    strides,
    padding,
    data_format='NHWC',
    name=None
)

類似的還有tf.nn.avg_pool,且參數用法和tf.nn.conv2d基本一致。

tf.truncated_normal

truncated_normal(
    shape,
    mean=0.0,
    stddev=1.0,
    dtype=tf.float32,
    seed=None,
    name=None
)

產生截斷正態分佈的隨機變量。均值和標準差可以自己設定,如果生成的隨機值與均值的差值大於兩倍的標準差,就重新生成。

tf.nn.softmax_cross_entropy_with_logits_v2

softmax_cross_entropy_with_logits_v2(
    _sentinel=None,
    labels=None,
    logits=None,
    dim=-1,
    name=None
)

tf.nn.softmax_cross_entropy_with_logits 函數以後會被棄用。

  • _sentinel: 一般不使用
  • labels: labels的每一行labels[i]必須爲一個概率分佈,也即是說labels的長度必須等於類別數。特別的,對於獨立分類問題,應當是one-shot label。
  • logits: 網絡輸出的未縮放的對數概率,即操作內部會對logits使用softmax操作,所以我們在外部就不要再用了。
  • dims: 類別信息所處的維度,默認-1,也就是最後一維

如果說label直接表示真實的類別標籤,比如第10類的label就是9。此時應當使用

tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章