機器學習之最小二乘法

最小二乘法:

   我們以最簡單的一元線性模型來解釋最小二乘法。什麼是一元線性模型呢? 監督學習中,如果預測的變量是離散的,我們稱其爲分類(如決策樹,支持向量機等),如果預測的變量是連續的,我們稱其爲迴歸。迴歸分析中,如果只包括一個自變量和一個因變量,且二者的關係可用一條直線近似表示,這種迴歸分析稱爲一元線性迴歸分析。如果迴歸分析中包括兩個或兩個以上的自變量,且因變量和自變量之間是線性關係,則稱爲多元線性迴歸分析。對於二維空間線性是一條直線;對於三維空間線性是一個平面,對於多維空間線性是一個超平面...

   對於一元線性迴歸模型, 假設從總體中獲取了n組觀察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。對於平面中的這n個點,可以使用無數條曲線來擬合。要求樣本回歸函數儘可能好地擬合這組值。綜合起來看,這條直線處於樣本數據的中心位置最合理。 選擇最佳擬合曲線的標準可以確定爲:使總的擬合誤差(即總殘差)達到最小。有以下三個標準可以選擇:

        (1)用“殘差和最小”確定直線位置是一個途徑。但很快發現計算“殘差和”存在相互抵消的問題。
        (2)用“殘差絕對值和最小”確定直線位置也是一個途徑。但絕對值的計算比較麻煩。
        (3)最小二乘法的原則是以“殘差平方和最小”確定直線位置。用最小二乘法除了計算比較方便外,得到的估計量還具有優良特性。這種方法對異常值非常敏感。

  最常用的是普通最小二乘法( Ordinary  Least Square,OLS):所選擇的迴歸模型應該使所有觀察值的殘差平方和達到最小。(Q爲殘差平方和)- 即採用平方損失函數。

  樣本回歸模型:

                                     其中ei爲樣本(Xi, Yi)的誤差

   平方損失函數:

                      

   則通過Q最小確定這條直線,即確定,以爲變量,把它們看作是Q的函數,就變成了一個求極值的問題,可以通過求導數得到。求Q對兩個待估參數的偏導數:

                       

    根據數學知識我們知道,函數的極值點爲偏導爲0的點。

    解得:

                   

 

這就是最小二乘法的解法,就是求得平方損失函數的極值點。 

 

最小二乘法與梯度下降法:

   最小二乘法跟梯度下降法都是通過求導來求損失函數的最小值,那它們有什麼區別呢。

   相同


  1.本質相同:兩種方法都是在給定已知數據(independent & dependent variables)的前提下對dependent variables算出出一個一般性的估值函數。然後對給定新數據的dependent variables進行估算。
  2.目標相同:都是在已知數據的框架內,使得估算值與實際值的總平方差儘量更小(事實上未必一定要使用平方),估算值與實際值的總平方差的公式爲:

                             \Delta =\frac{1}{2} \sum_{i=1}^{m}{(f_{\beta }(\bar{x_{i}} )-y_{i})^{2} }

   其中\bar{x_{i} }爲第i組數據的independent variable,y_{i}爲第i組數據的dependent variable,\beta爲係數向量。


   不同
  1.實現方法和結果不同:最小二乘法是直接對\Delta求導找出全局最小,是非迭代法。而梯度下降法是一種迭代法,先給定一個\beta,然後向\Delta下降最快的方向調整\beta,在若干次迭代之後找到局部最小。梯度下降法的缺點是到最小點的時候收斂速度變慢,並且對初始點的選擇極爲敏感,其改進大多是在這兩方面下功夫。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章