wifi詳解(三)

1        WLAN驅動結構介紹

1.1      SDIO驅動

在drivers/mmc下面是mmc卡,SD卡和SDIO卡驅動部分,其中包括host驅動,card驅動和core部分,由於網絡接口卡掛接在SDIO總線上,所以在此之前我們先看一下SDIO的驅動結構。其驅動在drivers/mmc目錄下的結構爲:

 

|-- mmc

|   |-- card

|   |-- core

|   |-- host

 

主要關注的目錄是core目錄,這個目錄是真個驅動的核心目錄,是媒體卡的通用代碼部分,包括core.c,host.c和sdio.c等。CORE 層完成了不同協議和規範的實現,併爲HOST 層的驅動提供了接口函數,該目錄完成sdio總線的註冊操作,相應的ops操作,以及支持mmc的代碼。詳細的情況將在函數接口部分詳細討論。

Host目錄是不同平臺根據平臺的特性而編寫的host驅動。

1.2      Boardcom無線通訊芯片

1.2.1       概述

全球有線和無線通信半導體市場的領導者Broadcom(博通)公司(Nasdaq:BRCM)宣佈,推出最新無線組合芯片BCM4330,該芯片可支持更多媒體形式和數據應用,且不會增大智能手機、平板電腦及其他移動設備的尺寸或縮短其電池壽命。BCM4330在單個芯片上集成了業界領先的Broadcom 802.11n Wi-Fi、藍牙和FM無線技術,與分立式半導體器件組成的解決方案相比,在成本、尺寸、功耗和性能上有顯著優勢,是移動設備的理想選擇。

BCM4330採用了新的Wi-Fi和藍牙標準,可支持新的、令人振奮的應用。例如,Broadcom BCM4330是業界第一款經過藍牙4.0標準認證的組合芯片解決方案, 集成了藍牙低功耗(BLE)標準。該標準使藍牙技術能以超低功耗運行,因此BCM4330非常適用於需要很長電池壽命的系統,如無線傳感器、醫療和健身監控設備等。BCM4330還支持Wi-Fi Direct™和藍牙高速(HS)標準,因此採用BCM4330的移動設備能直接相互通信,而不必先連接到接入點、成爲傳統網絡的一部分,從而爲很多無線設備之間新的應用和使用模式創造了機會。

Broadcom一直支持所有主流的操作系統(OS)平臺,如MicrosoftWindows和Windows Phone、Google Chrome、Android等等,而且不僅是BCM4330,所有藍牙、WLAN和GPS芯片組都提供這樣的支持。

1.2.2       源碼

Bcm4330驅動源碼一般被廠商單獨提供,如果要在開發的LINUX系統中(當然它還支持多種平臺)使用該源碼,可以添加到linux kernel源碼樹裏,也可以單獨組織存放,可以直接編譯到kernel,也可以編譯成模塊,然後再系統啓動的流程中或其他適當的實際加載到kernel中,一般建議單獨組織並編譯成模塊在需要的時候加載如kernel。

|-- src

|   |-- bcmsdio

|   |-- dhd

|   |--dongle

|   |--include

|   |-- shared

|   |-- wl

 

這裏主要內容到bcmsdio,dhd和wl三個目錄下,bcm4330驅動的入口在dhd/sys/dhd_linux.c文件中的dhd_module()函數,設備的初始化和相關驅動註冊都從這裏開始,

1.3      詳細接口及代碼分析

1.3.1      WIFI驅動流程分析

    以boardcom bcm4329芯片驅動爲例,相應的函數流程圖如下:       

                       

1.3.2       WIFI設備註冊流程

Platform_driver_register(wifi_device[_legacy])的調用將wifi_device[_legacy]驅動註冊到系統中,wifi_device_legacy是爲了兼容老版本的驅動。

Path: wl/sys/wl_android.c

Static struct Platform_driver wifi_device ={

         .probe     =     wifi_probe

         .remove   =     wifi_remove

         .suspend  =     wifi_supend

         .resume   =     wifi_resume

         .driver     =     {

         .name      =     bcmdhd_wlan

}

}

 

Static struct Platform_driver wifi_device_legacy ={

         .probe     =     wifi_probe

         .remove   =     wifi_remove

         .suspend  =     wifi_supend

         .resume   =     wifi_resume

         .driver     =     {

         .name      =     bcm4329_wlan

}

}

上面的展示了wifi平臺設備驅動的註冊過程,那麼在平臺相關的代碼區應該有wifi作爲平臺設備被初始化和註冊的地方:

Path: kernel/arch/arm/mach-msm/msm_

static struct resource mahimahi_wifi_resources[] = {

        [0] = {

                .name           = "bcm4329_wlan_irq",

                .start          =MSM_GPIO_TO_INT(MAHIMAHI_GPIO_WIFI_IRQ),

                .end            = MSM_GPIO_TO_INT(MAHIMAHI_GPIO_WIFI_IRQ),

                .flags          = IORESOURCE_IRQ |IORESOURCE_IRQ_HIGHLEVEL | IORESOURCE_IRQ_SHAREABLE,

        },

};

 

static structwifi_platform_data mahimahi_wifi_control = {

        .set_power      = mahimahi_wifi_power,

        .set_reset      = mahimahi_wifi_reset,

        .set_carddetect = mahimahi_wifi_set_carddetect,

        .mem_prealloc   = mahimahi_wifi_mem_prealloc,

};

 

static struct platform_device mahimahi_wifi_device = {

        .name           = "bcm4329_wlan",

        .id             = 1,

        .num_resources  = ARRAY_SIZE(mahimahi_wifi_resources),

        .resource       = mahimahi_wifi_resources,

        .dev            = {

               .platform_data = &mahimahi_wifi_control,

        },

};

上面是對wifi_device設備的初始化,下面是對該設備的註冊:

static int __initmahimahi_wifi_init(void)

{

        int ret;

 

        if (!machine_is_mahimahi())

                return 0;

 

        printk("%s: start\n",__func__);

       mahimahi_wifi_update_nvs("sd_oobonly=1\r\n", 0);

       mahimahi_wifi_update_nvs("btc_params70=0x32\r\n", 1);

        mahimahi_init_wifi_mem();

        ret = platform_device_register(&mahimahi_wifi_device);

        return ret;

}

 

late_initcall(mahimahi_wifi_init);      //表明在系統啓動的後期會自動調用加載該模塊

這樣,通過上面的初始化和註冊流程,wifi設備作爲平臺設備和驅動就可以握手成功了,這裏的平臺驅動只是對wifi設備的簡單管理,如對wifi設備的掛起和恢復等操作了。但是在wifi設備初始化之前是不能夠被掛起和恢復的,那麼wifi設備是如何初始化的呢?

Path: wl/sys/wl_android.c

static int wifi_probe(structplatform_device *pdev)

{

        struct wifi_platform_data *wifi_ctrl =

                (structwifi_platform_data *)(pdev->dev.platform_data);

 

        DHD_ERROR(("## %s\n",__FUNCTION__));

        wifi_irqres = platform_get_resource_byname(pdev,IORESOURCE_IRQ, "bcmdhd_wlan_irq");

        if (wifi_irqres == NULL)

                wifi_irqres =platform_get_resource_byname(pdev,

                        IORESOURCE_IRQ,"bcm4329_wlan_irq");

        wifi_control_data = wifi_ctrl;

 

        wifi_set_power(1,0);   /* Power On */

       wifi_set_carddetect(1); /* CardDetect (0->1) */

 

        up(&wifi_control_sem);

        return 0;

}

這是wifi平臺設備驅動註冊時成功匹配wifi設備後調用的函數wifi_probe(),它的主要工作就是從wifi設備中獲取終端資源,並獲取wifi_platform_data類型結構賦予wifi_control_data變量,這一步很重要,下面就可以看出了它的重要性。然後調用wifi_set_power和wifi_set_carddetect函數給wifi芯片上電並檢測。

int wifi_set_power(int on, unsignedlong msec)

{

        DHD_ERROR(("%s = %d\n",__FUNCTION__, on));

        if (wifi_control_data &&wifi_control_data->set_power) {

                wifi_control_data->set_power(on);

        }

        if (msec)

                msleep(msec);

        return 0;

}

Wifi_set_power函數中調用wifi_control_data->set_power(on),wifi_control_data就是剛纔說的那個重要變量,注意它是從wifi_device平臺設備的wifi_platform_data獲取的,那麼看看上面的wifi_device初始化的代碼:

static struct platform_device mahimahi_wifi_device = {

        .name           = "bcm4329_wlan",

        .id             = 1,

        .num_resources  = ARRAY_SIZE(mahimahi_wifi_resources),

        .resource       = mahimahi_wifi_resources,

        .dev            = {

                .platform_data =&mahimahi_wifi_control,

        },

};

 

static struct wifi_platform_datamahimahi_wifi_control= {

        .set_power      = mahimahi_wifi_power,

        .set_reset      = mahimahi_wifi_reset,

        .set_carddetect = mahimahi_wifi_set_carddetect,

        .mem_prealloc   = mahimahi_wifi_mem_prealloc,

};

所以它實際調用的是mahimahi_wifi_power函數,該函數的定義在kernel/arch/arm /mach-msm/board-mahimahi-mmc.c之中:

int mahimahi_wifi_power(int on)

{

       printk("%s: %d\n", __func__, on);

 

        if (on) {

               config_gpio_table(wifi_on_gpio_table,

                                  ARRAY_SIZE(wifi_on_gpio_table));

               mdelay(50);

        } else {

               config_gpio_table(wifi_off_gpio_table,

                                 ARRAY_SIZE(wifi_off_gpio_table));

        }

 

        mdelay(100);

        gpio_set_value(MAHIMAHI_GPIO_WIFI_SHUTDOWN_N,on); /* WIFI_SHUTDOWN */

        mdelay(200);

 

       mahimahi_wifi_power_state = on;

        return 0;

}

調用gpio_set_value操作wifi芯片,給wifi芯片上電。那麼來看看wifi_set_ carddetect函數究竟幹了什麼:

Path:wl/sys/wl_android.c

static int wifi_set_carddetect(int on)

{

       DHD_ERROR(("%s = %d\n", __FUNCTION__, on));

        if(wifi_control_data && wifi_control_data->set_carddetect) {

               wifi_control_data->set_carddetect(on);

        }

        return 0;

}

同樣會調用wifi_device的mahimahi_wifi_set_carddetect函數:

Path:kernel/arch/arm/mach-msm/board-mahimahi-mmc.c

int mahimahi_wifi_set_carddetect(int val)

{

       pr_info("%s: %d\n", __func__, val);

       mahimahi_wifi_cd = val;

        if(wifi_status_cb) {

                wifi_status_cb(val,wifi_status_cb_devid);

        } else

               pr_warning("%s: Nobody to notify\n", __func__);

        return 0;

}

Wifi_status_cb代碼:

static int mahimahi_wifi_status_register(

                        void (*callback)(intcard_present, void *dev_id),

                        void *dev_id)

{

        if (wifi_status_cb)

                return -EAGAIN;

        wifi_status_cb = callback;

        wifi_status_cb_devid = dev_id;

        return 0;

}

 

static unsigned intmahimahi_wifi_status(struct device *dev)

{

        return mahimahi_wifi_cd;

}

 

static structmmc_platform_data mahimahi_wifi_data = {

        .ocr_mask               = MMC_VDD_28_29,

        .built_in               = 1,

        .status                 = mahimahi_wifi_status,

        .register_status_notify= mahimahi_wifi_status_register,

        .embedded_sdio          = &mahimahi_wifi_emb_data,

};

由上面代碼;不難看出會有個地方調用mahimahi_wifi_status_register設置wifi_status_cb這個回調函數,可以跟蹤這個mahimahi_wifi_data結構體,來看看它被傳遞給了誰:

int msm_add_sdcc(unsigned intcontroller, struct mmc_platform_data *plat,

                 unsigned int stat_irq,unsigned long stat_irq_flags);

 

int __initmahimahi_init_mmc(unsigned int sys_rev, unsigned debug_uart)

{

        ……

 

        msm_add_sdcc(1, &mahimahi_wifi_data, 0, 0);

 

       ……

        if (system_rev > 0)

                msm_add_sdcc(2,&mahimahi_sdslot_data, 0, 0);

        else {

                mahimahi_sdslot_data.status =mahimahi_sdslot_status_rev0;

               mahimahi_sdslot_data.register_status_notify = NULL;

               set_irq_wake(MSM_GPIO_TO_INT(MAHIMAHI_GPIO_SDMC_CD_REV0_N), 1);

                msm_add_sdcc(2, &mahimahi_sdslot_data,

         ……

}

可以跟蹤到這裏Path:kernel/arch/arm/mach-msm/devices-msm7x30.c

struct platform_device msm_device_sdc1 = {

        .name           = "msm_sdcc",

        .id             = 1,

        .num_resources  = ARRAY_SIZE(resources_sdc1),

        .resource       = resources_sdc1,

        .dev            = {

               .coherent_dma_mask      =0xffffffff,

        },

};

 

struct platform_device msm_device_sdc2 = {

        .name           = "msm_sdcc",

        .id             = 2,

        .num_resources  = ARRAY_SIZE(resources_sdc2),

        .resource       = resources_sdc2,

        .dev            = {

               .coherent_dma_mask      =0xffffffff,

        },

};

 

struct platform_devicemsm_device_sdc3 = {

        .name           = "msm_sdcc",

        .id             = 3,

        .num_resources  = ARRAY_SIZE(resources_sdc3),

        .resource       = resources_sdc3,

        .dev            = {

                .coherent_dma_mask      = 0xffffffff,

        },

};

 

struct platform_device msm_device_sdc4= {

        .name           = "msm_sdcc",

        .id             = 4,

        .num_resources  = ARRAY_SIZE(resources_sdc4),

        .resource       = resources_sdc4,

        .dev            = {

                                                                                                                         439,2-16      62%

                .coherent_dma_mask      = 0xffffffff,

        },

};

 

static struct platform_device *msm_sdcc_devices[] __initdata = {

        &msm_device_sdc1,

        &msm_device_sdc2,

        &msm_device_sdc3,

        &msm_device_sdc4,

};

 

int __initmsm_add_sdcc(unsigned int controller, struct mmc_platform_data *plat,

                        unsigned int stat_irq,unsigned long stat_irq_flags)

{

        ……

 

        pdev =msm_sdcc_devices[controller-1]; //因爲傳過來的controller1,所以下面註冊的是第一個平臺設備

        pdev->dev.platform_data= plat;  //被傳遞給平臺設備的platform_data

 

        res =platform_get_resource_byname(pdev, IORESOURCE_IRQ, "status_irq");

        if (!res)

                return -EINVAL;

        else if (stat_irq) {

                res->start = res->end =stat_irq;

                res->flags &=~IORESOURCE_DISABLED;

                res->flags |=stat_irq_flags;

        }

 

        return platform_device_register(pdev); //如上所述

}

那麼這個平臺設備是什麼呢,就是sd卡控制器,也就是前面說的host驅動所驅動的主機控制設備。

Path: drivers/mmc/host/msm_sdcc.c

static struct platform_drivermsmsdcc_driver = {

        .probe          = msmsdcc_probe,

        .suspend        = msmsdcc_suspend,

        .resume         = msmsdcc_resume,

        .driver         = {

                .name   = "msm_sdcc",

        },

};

 

static int __initmsmsdcc_init(void)

{

        return platform_driver_register(&msmsdcc_driver);

}

驅動成功匹配設備後,調用probe函數:

static int

msmsdcc_probe(structplatform_device *pdev)

{

......

if (stat_irqres &&!(stat_irqres->flags & IORESOURCE_DISABLED)) {

……

        } else if(plat->register_status_notify) {

                plat->register_status_notify(msmsdcc_status_notify_cb,host);

        } else if (!plat->status)

......

}

msmsdcc_status_notify_cb調用msmsdcc_check_status函數:

msmsdcc_status_notify_cb(intcard_present, void *dev_id)

{

        struct msmsdcc_host *host = dev_id;

 

        printk(KERN_DEBUG "%s:card_present %d\n", mmc_hostname(host->mmc),

               card_present);

        msmsdcc_check_status((unsigned long) host);

}

msmsdcc_check_status調用mmc_detect_change函數:

static void

msmsdcc_check_status(unsignedlong data)

{

        ……

        if (status ^ host->oldstat) {

                pr_info("%s: Slot statuschange detected (%d -> %d)\n",

                        mmc_hostname(host->mmc),host->oldstat, status);

                if (status &&!host->plat->built_in)

                        mmc_detect_change(host->mmc, (5 * HZ) / 2);

                else

                        mmc_detect_change(host->mmc, 0);

        }

 

        host->oldstat = status;

 

out:

        if (host->timer.function)

                mod_timer(&host->timer,jiffies + HZ);

}

可以看到mmc_detect_change被調用了,這個函數觸發了一個延時工作:

void mmc_detect_change(structmmc_host *host, unsigned long delay)

{

……

 

        mmc_schedule_delayed_work(&host->detect, delay);

}

這個時候它會在delay時間後,執行host->detect延時工作對應的函數,在host驅動註冊並匹配設備成功後執行的probe函數裏,會調用mmc_alloc_host動態創建一個mmc_host:

msmsdcc_probe(structplatform_device *pdev)

{

......

/*

         * Setup our host structure

         */

 

        mmc = mmc_alloc_host(sizeof(struct msmsdcc_host),&pdev->dev);

        if (!mmc) {

                ret = -ENOMEM;

                goto out;

        }

......

}

mmc_alloc_host初始化工作入口:

struct mmc_host*mmc_alloc_host(int extra, struct device *dev)

{

......

INIT_DELAYED_WORK(&host->detect, mmc_rescan);

......

}

mmc_rescan是core.c中一個很重要的函數,它遵照 SDIO 卡協議的 SDIO 卡啓動過程,包括了非激活模式、卡識別模式和數據傳輸模式三種模式共九種狀態的轉換,你需要參照相關規範來理解。

void mmc_rescan(structwork_struct *work)

{

        struct mmc_host *host =

                container_of(work, structmmc_host, detect.work);

......

        mmc_power_up(host);

        sdio_reset(host);

        mmc_go_idle(host);

 

       mmc_send_if_cond(host, host->ocr_avail);

 

        /*

         * First we search for SDIO...

         */

        err = mmc_send_io_op_cond(host, 0, &ocr);

        if (!err) {

                if (mmc_attach_sdio(host, ocr))

                        mmc_power_off(host);

                extend_wakelock = 1;

                goto out;

        }

......

}

這個mmc_attach_sdio函數很重要,它是SDIO卡的初始化的起點,主要工作包括:匹配SDIO卡的工作電壓,分配並初始化mmc_card結構,然後註冊mmc_card到系統中:

/*

 * Starting point for SDIO card init.

 */

int mmc_attach_sdio(structmmc_host *host, u32 ocr)

{

        ……

 

        mmc_attach_bus(host,&mmc_sdio_ops);  //初始化hostbus_ops

 

       ……

 

        host->ocr = mmc_select_voltage(host, ocr); //匹配SDIO卡工作電壓

 

        ……

 

        /*

         * Detect and init the card.

         */

        err = mmc_sdio_init_card(host, host->ocr, NULL, 0);//檢測,分配初始化mmc_card

        if (err)

                goto err;

        card = host->card;

/*

         * If needed, disconnect card detectionpull-up resistor.

         */

        err = sdio_disable_cd(card);

        if (err)

                goto remove;

 

        /*

         * Initialize (but don't add) all present functions.

         */

        for (i = 0; i < funcs; i++, card->sdio_funcs++) {

#ifdef CONFIG_MMC_EMBEDDED_SDIO

                if(host->embedded_sdio_data.funcs) {

                       struct sdio_func *tmp;

 

                        tmp = sdio_alloc_func(host->card);

                        if(IS_ERR(tmp))

                               goto remove;

                       tmp->num = (i + 1);

                       card->sdio_func[i] = tmp;

                       tmp->class = host->embedded_sdio_data.funcs[i].f_class;

                       tmp->max_blksize = host->embedded_sdio_data.funcs[i].f_maxblksize;

                       tmp->vendor = card->cis.vendor;

                       tmp->device = card->cis.device;

                } else {

#endif

                        err =sdio_init_func(host->card, i + 1);

                        if (err)

                                goto remove;

#ifdefCONFIG_MMC_EMBEDDED_SDIO

                }

#endif

        }

 

        mmc_release_host(host);

 

        /*

         * First add the card to the drivermodel...

         */

        err = mmc_add_card(host->card);     //添加mmc_card

        if (err)

                goto remove_added;

 

        /*

         * ...then the SDIO functions.

         */

        for (i = 0;i < funcs;i++) {

                err =sdio_add_func(host->card->sdio_func[i]);              //sdio_func加入系統

                if (err)

                       goto remove_added;

        }

 

        return 0;

......

}

這樣,SDIO卡已經初始化成功並添加到了驅動中。上面說的過程是在SDIO設備註冊時的調用流程,mmc_rescan是整個流程主體部分,由它來完成SDIO設備的初始化和添加。其實上面的流程只是創建,初始化,添加SDIO設備的一條線,還有另外的兩條線也會調用mmc_rescan函數進行SDIO設備的上述操作:

(1)    加載SDIO host驅動模塊

(2)    SDIO設備中斷

1.3.2.1        加載SDIO host驅動模塊

Host作爲平臺設備被註冊,前面也有列出相應源碼:

static struct platform_drivermsmsdcc_driver = {

        .probe          = msmsdcc_probe,

        .suspend        = msmsdcc_suspend,

        .resume         = msmsdcc_resume,

        .driver         = {

                .name   = "msm_sdcc",

        },

};

 

static int __initmsmsdcc_init(void)

{

        returnplatform_driver_register(&msmsdcc_driver);

}

 

Probe函數會調用mmc_alloc_host函數(代碼前面已經貼出)來創建mmc_host結構變量,進行必要的初始化之後,調用mmc_add_host函數將它添加到驅動裏面:

int mmc_add_host(structmmc_host *host)

{

        ……

 

        err =device_add(&host->class_dev);

        if (err)

                return err;

        mmc_start_host(host);

        if (!(host->pm_flags &MMC_PM_IGNORE_PM_NOTIFY))

                register_pm_notifier(&host->pm_notify);

 

        return 0;

}

       Mmc_start_host定義如下:

void mmc_start_host(structmmc_host *host)

{

      mmc_power_off(host);

       mmc_detect_change(host, 0);

}

mmc_power_off中對 ios進行了設置,然後調用 mmc_set_ios(host);

host->ios.power_mode = MMC_POWER_OFF;

       host->ios.bus_width = MMC_BUS_WIDTH_1;

       host->ios.timing =MMC_TIMING_LEGACY;

       mmc_set_ios(host);

mmc_set_ios(host) 中的關鍵語句 host->ops->set_ios(host, ios),實際上在host驅動的probe函數中就已經對host->ops進行了初始化:

……

/*

         * Setup MMC host structure

         */

        mmc->ops = &msmsdcc_ops;

……

 

static const structmmc_host_ops msmsdcc_ops = {

        .request        = msmsdcc_request,

        .set_ios        =msmsdcc_set_ios,

        .enable_sdio_irq =msmsdcc_enable_sdio_irq,

};

 

所以實際上調用的是msmsdcc_set_ios,關於這個函數就不介紹了,可以參考源碼,再看 mmc_detect_change(host, 0),最後一句是:

      mmc_schedule_delayed_work(&host->detect,delay);

實際上就是調用我們前面說的延時函數 mmc_rescan,後面的流程是一樣的。

1.3.2.2        SDIO設備中斷

SDIO設備通過SDIO總線與host相連,SDIO總線的DAT[1]即pin8可以作爲中斷線使用,當SDIO設備向host產生中斷時,host會對終端做出相應的動作,在host驅動的probe函數中申請並註冊相應的中斷函數:

static int

msmsdcc_probe(structplatform_device *pdev)

{

......

  cmd_irqres = platform_get_resource_byname(pdev, IORESOURCE_IRQ,

                                                 "cmd_irq");

        pio_irqres =platform_get_resource_byname(pdev, IORESOURCE_IRQ,

                                                 "pio_irq");

        stat_irqres =platform_get_resource_byname(pdev, IORESOURCE_IRQ,

                                                  "status_irq");

......

  if (stat_irqres && !(stat_irqres->flags &IORESOURCE_DISABLED)) {

                unsigned long irqflags =IRQF_SHARED |

                        (stat_irqres->flags& IRQF_TRIGGER_MASK);

 

                host->stat_irq = stat_irqres->start;

                ret = request_irq(host->stat_irq,

                                  msmsdcc_platform_status_irq,

                                 irqflags,

                                 DRIVER_NAME " (slot)",

                                 host);

                if (ret) {

                        pr_err("%s: Unableto get slot IRQ %d (%d)\n",

                              mmc_hostname(mmc), host->stat_irq, ret);

                        goto clk_disable;

                }

        }

......

}

當產生相應的中斷時調用msmsdcc_platform_status_irq中斷處理函數,這個函數的處理流程:

msmsdcc_platform_status_irq—>

msmsdcc_check_statusà

mmc_detect_changeà

mmc_rescanà

那麼,這裏爲何調用mmc_rescan呢?因爲前面說過mmc_rescanrescan函數主要用於SDIO設備的初始化,如果SDIO設備產生中斷不應該是已經初始化可以使用了嗎?其實mmc_rescan還有其它的工作,從函數名就能看出來它還有再掃描檢測功能,即如果設備產生了中斷,mmc_rescan函數一開始就會再次檢測所有掛接在該host上的所有SDIO設備,確認是否存在,如果不存在就做相應的釋放工作,以確保數據的一致性。如果檢測到了新的設備那麼它就會創建一個新的mmc_card,初始化並添加該設備。

中斷引發的調用mmc_rescan動作的意義:實現了SDIO設備的熱插拔功能。

1.3.3       WIFI驅動流程(二)

  此調用流程由dhd_bus_register發起,通過sdio_register_driver註冊一個sdio設備驅動,然後通過dhdsdio_probe初始化並註冊一個網絡設備,網絡設備的註冊標誌着wifi驅動已經成功加載,關於網絡設備的創建,初始化和註冊後面會有詳細介紹,先來理一下上面的調用流程,:

 

dhd_mudule_init—>             //path:dhd/sys/dhd_linux.c

Dhd_bus_registerà        // dhd/sys/dhd_sdio.c

Bcmsdh_registerà         // bcmsdio/sys/bcmsdh_linux.c

Sdio_function_inità              // bcmsdio/sys/bcmsdh_sdmmc_linux.c

Sdio_register_driverà  // bcmsdio/sys/bcmsdh_sdmmc_linux.c

Bcmsdh_sdmmc_probeà//bcmsdio/sys/bcmsdh_sdmmc_linux.c

Bcmsdh_probeà//bcmsdio/sys/bcmsdh_linux.c

Bcmsdio_probeà //dhd/sys/dhd_sdio.c

這裏注意上面兩個紅色標記的函數,sdio_register_driver註冊了一個sdio設備,在匹配成功後調用bcmsdh_sdmmc_probe函數,這個函數會調用bcmsdh_probe。這裏有一點要注意:瀏覽bcmsdh_linux.c文件可以看出,在bcmsdh_register函數中,當定義了BCMLXSDMMC宏時,會調用sdio_function_init函數,否則調用driver_register函數:

int

bcmsdh_register(bcmsdh_driver_t*driver)

{

        int error = 0;

 

        drvinfo = *driver; //注意這裏,後面會介紹到它的用處

 

#if defined(BCMPLATFORM_BUS)

#if defined(BCMLXSDMMC)

       SDLX_MSG(("Linux Kernel SDIO/MMC Driver\n"));

        error =sdio_function_init();

#else

       SDLX_MSG(("Intel PXA270 SDIO Driver\n"));

        error =driver_register(&bcmsdh_driver);

#endif /* defined(BCMLXSDMMC) */

        return error;

#endif /*defined(BCMPLATFORM_BUS) */

 

#if !defined(BCMPLATFORM_BUS)&& !defined(BCMLXSDMMC)

#if (LINUX_VERSION_CODE <KERNEL_VERSION(2, 6, 0))

        if (!(error =pci_module_init(&bcmsdh_pci_driver)))

                return 0;

#else

        if (!(error =pci_register_driver(&bcmsdh_pci_driver)))

                return 0;

#endif

 

        SDLX_MSG(("%s: pci_module_initfailed 0x%x\n", __FUNCTION__, error));

#endif /* BCMPLATFORM_BUS */

 

        return error;

}

上面的流程中有sdio_function_init的調用出現,所以這裏實際上BCMLXSDMMC宏被定義了,bcmsdh_probe函數只是作爲一個普通函數被調用,如果不定義該宏,那麼bcmsdh_probe函數會被作爲驅動匹配設備後第一個調用的函數而被自動調用。

再看看dhdsdio_probe函數調用的玄機,從上面的bcmsdh_register函數可以看出它的參數被傳遞給了drvinfo,看看bcmsdh_register的調用地方:

static bcmsdh_driver_t dhd_sdio = {

        dhdsdio_probe,

        dhdsdio_disconnect

};

 

int

dhd_bus_register(void)

{

        DHD_TRACE(("%s: Enter\n",__FUNCTION__));

 

        return bcmsdh_register(&dhd_sdio);

}

上面傳遞的參數是dhd_sdio結構變量,被用兩個函數初始化了,那麼哪一個是attach呢?需要找到定義bcmsdh_driver_t結構定義的地方:

Path:src/include/bcmsdh.h

/* callback functions */

typedef struct {

        /* attach to device */

        void *(*attach)(uint16 vend_id, uint16 dev_id, uint16 bus,uint16 slot,

                       uint16 func, uint bustype, void * regsva, osl_t * osh,

                       void * param);

        /* detach from device */

        void (*detach)(void *ch);

} bcmsdh_driver_t;

沒錯,就是第一個dhdsdio_probe函數,再來看看什麼地方調用了這個attach函數:

Path:bcmsdio/sys/bcmsdh_linux.c

 

#ifndef BCMLXSDMMC

static

#endif /* BCMLXSDMMC */

int bcmsdh_probe(struct device*dev)

{

......

if (!(sdhc->ch = drvinfo.attach((vendevid>> 16),

                                        (vendevid & 0xFFFF), 0, 0, 0, 0,

                                        (void*)regs, NULL, sdh))) {

                SDLX_MSG(("%s: device attachfailed\n", __FUNCTION__));

                goto err;

        }

 

        return 0;

......

}

紅色部分的函數調用是drvinfo.attach,就是上面傳遞過來的dhdsdio_probe函數了,仔細閱讀你會發現上面那個bcmsdh_driver_t結構體定義的地方有個說明,即把該結構的成員函數當做callback函數來使用,這就是它的用意所在。

1.3.4       網絡設備註冊流程

上面是網絡設備註冊流程,在dhdsdio_probe函數中先後對dhd_attach和dhd_net_attach兩個函數調用,dhd_attach主要用於創建和初始化dhd_info_t和net_device兩個結構變量,然後調用dhd_add_if將創建的net_device變量添加到dhd_info_t變量的iflist列表中(支持多接口)。

Dhd_attach的流程如下:

dhd_pub_t *

dhd_attach(osl_t *osh, structdhd_bus *bus, uint bus_hdrlen)

{

        dhd_info_t *dhd = NULL;

        struct net_device *net = NULL;

 

......

        /* Allocate etherdev, including spacefor private structure */

        if (!(net = alloc_etherdev(sizeof(dhd)))) {   //網絡設備的創建

                DHD_ERROR(("%s: OOM -alloc_etherdev\n", __FUNCTION__));

                goto fail;

        }

        dhd_state |=DHD_ATTACH_STATE_NET_ALLOC;

 

 

        /* Allocate primary dhd_info */

        if (!(dhd = MALLOC(osh, sizeof(dhd_info_t)))) { //dhd的創建

                DHD_ERROR(("%s: OOM -alloc dhd_info\n", __FUNCTION__));

                goto fail;

        }

......

/* Set network interface name if it was provided as moduleparameter */

        if (iface_name[0]) {

                int len;

                char ch;

                strncpy(net->name,iface_name, IFNAMSIZ);

                net->name[IFNAMSIZ - 1] = 0;

                len = strlen(net->name);

                ch = net->name[len - 1];

                if ((ch > '9' || ch <'0') && (len < IFNAMSIZ - 2))

                        strcat(net->name,"%d");

        }

 

        if (dhd_add_if(dhd, 0, (void *)net, net->name, NULL, 0, 0)== DHD_BAD_IF)   //將前面創建的net添加到iflist列表中

                goto fail;

        dhd_state |= DHD_ATTACH_STATE_ADD_IF;

......

Memcpy(netdev_priv(net), &dhd, sizeof(dhd)); //關聯dhdnet

 

//dhd的初始化工作

}

Dhd_add_if的添加網絡接口流程:

int

dhd_add_if(dhd_info_t *dhd, int ifidx, void *handle, char *name,

        uint8 *mac_addr,uint32 flags, uint8 bssidx)

{

        dhd_if_t *ifp;

 

        DHD_TRACE(("%s: idx %d,handle->%p\n", __FUNCTION__, ifidx, handle));

 

        ASSERT(dhd && (ifidx <DHD_MAX_IFS));

 

        ifp =dhd->iflist[ifidx];

        if (ifp != NULL) {

                if (ifp->net != NULL) {

                       netif_stop_queue(ifp->net);

                       unregister_netdev(ifp->net);

                        free_netdev(ifp->net);   //如果已經存在,釋放net成員

                }

        } else

                if ((ifp = MALLOC(dhd->pub.osh,sizeof(dhd_if_t))) == NULL) {

                       DHD_ERROR(("%s: OOM - dhd_if_t\n", __FUNCTION__));      //否則,創建一個dhd_if_t結構變量

                        return -ENOMEM;

                }

 

        memset(ifp, 0, sizeof(dhd_if_t));

        ifp->info = dhd;      //進行系列初始化,添加工作

       dhd->iflist[ifidx] = ifp;

       strncpy(ifp->name, name, IFNAMSIZ);

        ifp->name[IFNAMSIZ] = '\0';

        if (mac_addr != NULL)

                memcpy(&ifp->mac_addr, mac_addr,ETHER_ADDR_LEN);

 

        if (handle == NULL) {

                ifp->state = DHD_IF_ADD;

                ifp->idx = ifidx;

                ifp->bssidx = bssidx;

               ASSERT(&dhd->thr_sysioc_ctl.thr_pid >= 0);

               up(&dhd->thr_sysioc_ctl.sema);

        } else

                ifp->net = (struct net_device *)handle;             //handle即一個net_device變量

 

        return 0;

}

這樣,一個net_device網路設備就被添加到了接口管理列表中了,但是這是網路設備還沒有完成初始化和註冊工作,bcmsdio_probe函數隨後對dhd_net_attach的調用完成了這個操作:

int

dhd_net_attach(dhd_pub_t*dhdp, int ifidx)

{

        dhd_info_t *dhd = (dhd_info_t*)dhdp->info;

        struct net_device *net = NULL;

        int err = 0;

        uint8 temp_addr[ETHER_ADDR_LEN] = {0x00, 0x90, 0x4c, 0x11, 0x22, 0x33 };

 

        DHD_TRACE(("%s: ifidx %d\n",__FUNCTION__, ifidx));

 

        ASSERT(dhd &&dhd->iflist[ifidx]);

 

        net = dhd->iflist[ifidx]->net;              //首先從剛纔添加的接口列表中取出net,然後進行下面的系列初始化工作

        ASSERT(net);

//根據內核版本信息,選擇對net成員函數的初始化方式,假設是2.6.30的版本

#if (LINUX_VERSION_CODE <KERNEL_VERSION(2, 6, 31))

        ASSERT(!net->open);

        net->get_stats = dhd_get_stats;

        net->do_ioctl =dhd_ioctl_entry;

       net->hard_start_xmit = dhd_start_xmit;

       net->set_mac_address = dhd_set_mac_address;

       net->set_multicast_list = dhd_set_multicast_list;

        net->open =net->stop = NULL;

#else

        ASSERT(!net->netdev_ops);

        net->netdev_ops = &dhd_ops_virt;

#endif

 

        /* Ok, link into the network layer...*/

        if (ifidx == 0) {

                /*

                 * device functions for theprimary interface only

                 */

#if (LINUX_VERSION_CODE <KERNEL_VERSION(2, 6, 31))

                net->open = dhd_open;

               net->stop = dhd_stop;

#else

                net->netdev_ops = &dhd_ops_pri;

#endif

        } else {

                /*

                 * We have to use the primaryMAC for virtual interfaces

                                                                                                                          3417,1-8      66%

                 */

                memcpy(temp_addr,dhd->iflist[ifidx]->mac_addr, ETHER_ADDR_LEN);

                /*

                 * Android sets the locallyadministered bit to indicate that this is a

                 * portable hotspot.  This will not work in simultaneous AP/STAmode,

                 * nor with P2P.  Need to set the Donlge's MAC address, andthen use that.

                 */

                if(!memcmp(temp_addr, dhd->iflist[0]->mac_addr,

                        ETHER_ADDR_LEN)) {

                        DHD_ERROR(("%sinterface [%s]: set locally administered bit in MAC\n",

                        __func__,net->name));

                        temp_addr[0] |= 0x02;

                }

        }

 

       net->hard_header_len = ETH_HLEN + dhd->pub.hdrlen;

#if LINUX_VERSION_CODE >=KERNEL_VERSION(2, 6, 24)

        net->ethtool_ops = &dhd_ethtool_ops;

#endif /* LINUX_VERSION_CODE>= KERNEL_VERSION(2, 6, 24) */

 

#ifdefined(CONFIG_WIRELESS_EXT)

#if WIRELESS_EXT < 19

        net->get_wireless_stats = dhd_get_wireless_stats;

#endif /* WIRELESS_EXT < 19*/

#if WIRELESS_EXT > 12

        net->wireless_handlers = (struct iw_handler_def*)&wl_iw_handler_def;   //這裏的初始化工作很重要,之後的ioctl流程會涉及到對它的使用

#endif /* WIRELESS_EXT > 12*/

#endif /*defined(CONFIG_WIRELESS_EXT) */

 

        dhd->pub.rxsz =DBUS_RX_BUFFER_SIZE_DHD(net);

                //設置設備地址

        memcpy(net->dev_addr, temp_addr, ETHER_ADDR_LEN);

 

        if ((err =register_netdev(net)) != 0) {       //註冊net

                DHD_ERROR(("couldn'tregister the net device, err %d\n", err));

                goto fail;

        }

       

 

……

}

到這裏net網絡設備就被註冊到系統中了,設備準備好了就好對設備進行訪問了


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章