定時器

定時器概述

網絡程序需要處理的第三類事件是定時事件,比如定期檢測一個客戶連接的活動狀態。服務器程序通常管理着衆多定時事件,因此有效的組織這些定時事件,使之能在預期的時間點被觸發且不影響服務器的主要邏輯,對於服務器的性能有着至關重要的影響。

爲此,我們要將每個定時事件分別封裝成定時器,並使用某種容器類數據結構,比如鏈表、排序鏈表和時間輪,將所有定時器串聯起來,以實現對定時事件的統一管理

定時是指在一段時間之後觸發某段代碼的機制,我們可以在這段代碼中依次處理所有到期的定時器。換言之,定時機制是定時器得以被處理的原動力。

Linux提供了三種定時方法:

  • socket選項 SO_RCVTIMEO 和 SO_SNDTIMEO;
  • SIGALRM信號;
  • I/O複用系統調用的超時參數;

socket選項 SO_RCVTIMEO 和 SO_SNDTIMEO

socket選項 SO_RCVTIMEO 和 SO_SNDTIMEO,分別用來設置socket接收數據超時時間和發送數據超時時間,其僅對與數據接收和發送相關的socket專用系統調用有效,包括send、sendmsg、recv、recvmsg、accept、connect

這裏寫圖片描述

可以根據系統調用的返回值和errno來判斷超時時間是否到達,進而決定是否開始處理定時任務;

SIGALRM信號

由alarm和setitimer函數設置的實時鬧鐘一旦超時,將觸發SIGALRM信號。因此,可以利用該信號的信號處理函數觸發定時任務。但是如果要處理多個定時任務,就需要不斷觸發SIGALRM信號,並在其信號處理函數中執行到期的任務。

一般而言,SIGALRM信號按照固定的頻率生成,即由alarm或setitimer設置的定時週期T保持不變,如果某個定時任務的超時時間不是T的整數倍,那麼它實際被執行的時間和預期的時間將略有偏差,因此定時週期T反映了定時的精度

定時器通常至少包含兩個成員:一個超時時間(相對時間或絕對時間)和一個任務回調函數,有的時候還可能包含會調函數被執行時需要傳入的參數,以及是否重啓定時器等。

定時器升序鏈表實現

lst_timer.h

#ifndef LST_TIMER
#define LST_TIMER

#include <time.h>

#define BUFFER_SIZE 64
class util_timer;
struct client_data
{
    sockaddr_in address;
    int sockfd;
    char buf[ BUFFER_SIZE ];
    util_timer* timer;
};

class util_timer
{
public:
    util_timer() : prev( NULL ), next( NULL ){}

public:
   time_t expire; 
   void (*cb_func)( client_data* );
   client_data* user_data;
   util_timer* prev;
   util_timer* next;
};

class sort_timer_lst
{
public:
    sort_timer_lst() : head( NULL ), tail( NULL ) {}
    ~sort_timer_lst()
    {
        util_timer* tmp = head;
        while( tmp )
        {
            head = tmp->next;
            delete tmp;
            tmp = head;
        }
    }
    void add_timer( util_timer* timer )
    {
        if( !timer )
        {
            return;
        }
        if( !head )
        {
            head = tail = timer;
            return; 
        }
        if( timer->expire < head->expire )
        {
            timer->next = head;
            head->prev = timer;
            head = timer;
            return;
        }
        add_timer( timer, head );
    }
    void adjust_timer( util_timer* timer )
    {
        if( !timer )
        {
            return;
        }
        util_timer* tmp = timer->next;
        if( !tmp || ( timer->expire < tmp->expire ) )
        {
            return;
        }
        if( timer == head )
        {
            head = head->next;
            head->prev = NULL;
            timer->next = NULL;
            add_timer( timer, head );
        }
        else
        {
            timer->prev->next = timer->next;
            timer->next->prev = timer->prev;
            add_timer( timer, timer->next );
        }
    }
    void del_timer( util_timer* timer )
    {
        if( !timer )
        {
            return;
        }
        if( ( timer == head ) && ( timer == tail ) )
        {
            delete timer;
            head = NULL;
            tail = NULL;
            return;
        }
        if( timer == head )
        {
            head = head->next;
            head->prev = NULL;
            delete timer;
            return;
        }
        if( timer == tail )
        {
            tail = tail->prev;
            tail->next = NULL;
            delete timer;
            return;
        }
        timer->prev->next = timer->next;
        timer->next->prev = timer->prev;
        delete timer;
    }
    void tick()
    {
        /*
            相當於一個心搏函數,每隔一段固定時間就執行一次,以檢測並處理到期的任務
            判斷定時任務到期的依據是定時器的expire值小於當前的系統事件
        */
        if( !head )
        {
            return;
        }
        printf( "timer tick\n" );
        time_t cur = time( NULL );
        util_timer* tmp = head;
        while( tmp )
        {
            if( cur < tmp->expire )
            {
                break;
            }
            tmp->cb_func( tmp->user_data );
            head = tmp->next;
            if( head )
            {
                head->prev = NULL;
            }
            delete tmp;
            tmp = head;
        }
    }

private:
    void add_timer( util_timer* timer, util_timer* lst_head )
    {
        util_timer* prev = lst_head;
        util_timer* tmp = prev->next;
        while( tmp )
        {
            if( timer->expire < tmp->expire )
            {
                prev->next = timer;
                timer->next = tmp;
                tmp->prev = timer;
                timer->prev = prev;
                break;
            }
            prev = tmp;
            tmp = tmp->next;
        }
        if( !tmp )
        {
            prev->next = timer;
            timer->prev = prev;
            timer->next = NULL;
            tail = timer;
        }

    }

private:
    util_timer* head;
    util_timer* tail;
};

#endif

nonactive_conn.cpp

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <pthread.h>
#include "lst_timer.h"

#define FD_LIMIT 65535
#define MAX_EVENT_NUMBER 1024
#define TIMESLOT 5

static int pipefd[2];
static sort_timer_lst timer_lst;
static int epollfd = 0;

int setnonblocking( int fd )
{
    int old_option = fcntl( fd, F_GETFL );
    int new_option = old_option | O_NONBLOCK;
    fcntl( fd, F_SETFL, new_option );
    return old_option;
}

void addfd( int epollfd, int fd )
{
    epoll_event event;
    event.data.fd = fd;
    event.events = EPOLLIN | EPOLLET;
    epoll_ctl( epollfd, EPOLL_CTL_ADD, fd, &event );
    setnonblocking( fd );
}

void sig_handler( int sig )
{
    int save_errno = errno;
    int msg = sig;
    send( pipefd[1], ( char* )&msg, 1, 0 );
    errno = save_errno;
}

void addsig( int sig )
{
    struct sigaction sa;
    memset( &sa, '\0', sizeof( sa ) );
    sa.sa_handler = sig_handler;
    sa.sa_flags |= SA_RESTART;
    sigfillset( &sa.sa_mask );
    assert( sigaction( sig, &sa, NULL ) != -1 );
}

void timer_handler()
{
    timer_lst.tick();
    alarm( TIMESLOT );
}

void cb_func( client_data* user_data )
{
    epoll_ctl( epollfd, EPOLL_CTL_DEL, user_data->sockfd, 0 );
    assert( user_data );
    close( user_data->sockfd );
    printf( "close fd %d\n", user_data->sockfd );
}

int main( int argc, char* argv[] )
{
    if( argc <= 2 )
    {
        printf( "usage: %s ip_address port_number\n", basename( argv[0] ) );
        return 1;
    }
    const char* ip = argv[1];
    int port = atoi( argv[2] );

    int ret = 0;
    struct sockaddr_in address;
    bzero( &address, sizeof( address ) );
    address.sin_family = AF_INET;
    inet_pton( AF_INET, ip, &address.sin_addr );
    address.sin_port = htons( port );

    int listenfd = socket( PF_INET, SOCK_STREAM, 0 );
    assert( listenfd >= 0 );

    ret = bind( listenfd, ( struct sockaddr* )&address, sizeof( address ) );
    assert( ret != -1 );

    ret = listen( listenfd, 5 );
    assert( ret != -1 );

    epoll_event events[ MAX_EVENT_NUMBER ];
    int epollfd = epoll_create( 5 );
    assert( epollfd != -1 );
    addfd( epollfd, listenfd );

    ret = socketpair( PF_UNIX, SOCK_STREAM, 0, pipefd );
    assert( ret != -1 );
    setnonblocking( pipefd[1] );
    addfd( epollfd, pipefd[0] );

    // add all the interesting signals here
    addsig( SIGALRM );
    addsig( SIGTERM );
    bool stop_server = false;

    client_data* users = new client_data[FD_LIMIT]; 
    bool timeout = false;
    alarm( TIMESLOT );

    while( !stop_server )
    {
        int number = epoll_wait( epollfd, events, MAX_EVENT_NUMBER, -1 );
        if ( ( number < 0 ) && ( errno != EINTR ) )
        {
            printf( "epoll failure\n" );
            break;
        }

        for ( int i = 0; i < number; i++ )
        {
            int sockfd = events[i].data.fd;
            if( sockfd == listenfd )
            {
                struct sockaddr_in client_address;
                socklen_t client_addrlength = sizeof( client_address );
                int connfd = accept( listenfd, ( struct sockaddr* )&client_address, &client_addrlength );
                addfd( epollfd, connfd );
                users[connfd].address = client_address;
                users[connfd].sockfd = connfd;
                util_timer* timer = new util_timer;
                timer->user_data = &users[connfd];
                timer->cb_func = cb_func;
                time_t cur = time( NULL );
                timer->expire = cur + 3 * TIMESLOT;
                users[connfd].timer = timer;
                timer_lst.add_timer( timer );
            }
            else if( ( sockfd == pipefd[0] ) && ( events[i].events & EPOLLIN ) )
            {
                int sig;
                char signals[1024];
                ret = recv( pipefd[0], signals, sizeof( signals ), 0 );
                if( ret == -1 )
                {
                    // handle the error
                    continue;
                }
                else if( ret == 0 )
                {
                    continue;
                }
                else
                {
                    for( int i = 0; i < ret; ++i )
                    {
                        switch( signals[i] )
                        {
                            case SIGALRM:
                            {
                                timeout = true;
                                break;
                            }
                            case SIGTERM:
                            {
                                stop_server = true;
                            }
                        }
                    }
                }
            }
            else if(  events[i].events & EPOLLIN )
            {
                memset( users[sockfd].buf, '\0', BUFFER_SIZE );
                ret = recv( sockfd, users[sockfd].buf, BUFFER_SIZE-1, 0 );
                printf( "get %d bytes of client data %s from %d\n", ret, users[sockfd].buf, sockfd );
                util_timer* timer = users[sockfd].timer;
                if( ret < 0 )
                {
                    if( errno != EAGAIN )
                    {
                        cb_func( &users[sockfd] );
                        if( timer )
                        {
                            timer_lst.del_timer( timer );
                        }
                    }
                }
                else if( ret == 0 )
                {
                    cb_func( &users[sockfd] );
                    if( timer )
                    {
                        timer_lst.del_timer( timer );
                    }
                }
                else
                {
                    //send( sockfd, users[sockfd].buf, BUFFER_SIZE-1, 0 );
                    if( timer )
                    {
                        time_t cur = time( NULL );
                        timer->expire = cur + 3 * TIMESLOT;
                        printf( "adjust timer once\n" );
                        timer_lst.adjust_timer( timer );
                    }
                }
            }
            else
            {
                // others
            }
        }

        if( timeout )
        {
            timer_handler();
            timeout = false;
        }
    }

    close( listenfd );
    close( pipefd[1] );
    close( pipefd[0] );
    delete [] users;
    return 0;
}

I/O複用系統調用的超時參數

Linux下的3組I/O複用系統調用都帶有超時參數,因此它們不僅能統一處理信號和I/O事件,也能統一處理定時事件。但是由於I/O複用系統調用可能在超時時間到期之前就返回(有I/O事件發生),所以如果我們要利用它們來定時,就需要不斷更新定時參數以反映剩餘的時間。

#define TIMEOUT 5000

int timeout = TIMEOUT;
time_t start = time(NULL);
time_t end = time(NULL);

while(1){
    printf("the timeout is now %d mil-seconds\n", timeout);
    start = time(NULL);
    int number = epoll_wait(epollfd, events, MAX_EVENT_NUMBER, timeout);
    if((number < 0) && (errno != EINTR)){
        printf("epoll failure\n");
        break;
    }
    //說明超時時間到,但沒有I/O事件
    if(number == 0){
        timeout = TIMEOUT;
        continue;
    }
    //epoll_wait返回值大於0,下次超時時間爲timeout
    end = time(NULL);

    timeout = (end - start)*1000;
    //number > 0 且剛好超時,則處理I/O事件和超時事件 
    if(timeout <= 0){
        timeout = TIMEOUT;
    }
    //handle connections
}

時間輪

基於排序鏈表的定時器存在一個問題:添加定時器的效率偏低

這裏寫圖片描述

上圖所示的時間輪內,指針指向輪子的一個槽(slot),它可以以恆定的速度順時針轉動,每轉動一步就指向下一個槽,每次轉動稱爲一個滴答(tick),一個滴答的時間間隔稱爲時間輪的槽間隔(si : slot interval),它實際上就是心搏時間。該時間輪一共有N個槽,因此運轉一週時間是N*si,每個槽指向一條定時器鏈表,每條鏈表上的定時器具有相同的特徵,他們的定時時間相隔 N* si的整數倍,時間輪正式利用這種關係將定時器散列到不同的鏈表中。

假設現在指針指向槽cs,要添加一個定時時間爲ti 的定時器,則該定時器將被插入槽ts對應的鏈表中:ts = (cs + (cs / si)) % N。

時間輪採用哈希表的思想,將定時器散列到不同的鏈表上,這樣每條鏈表上的定時器數目都將明顯少於原來的排序鏈表上的定時器數目,插入操作的效率基本不受定時器數目的影響。

對時間輪而言:要提高精度,就要使si值足夠小;要提高執行效率,則要求N足夠大;

#ifndef TIME_WHEEL_TIMER
#define TIME_WHEEL_TIMER

#include <time.h>
#include <netinet/in.h>
#include <stdio.h>

#define BUFFER_SIZE 64
class tw_timer;
struct client_data
{
    sockaddr_in address;
    int sockfd;
    char buf[ BUFFER_SIZE ];
    tw_timer* timer;
};

class tw_timer
{
public:
    tw_timer( int rot, int ts ) 
    : next( NULL ), prev( NULL ), rotation( rot ), time_slot( ts ){}

public:
    int rotation;
    int time_slot;
    void (*cb_func)( client_data* );
    client_data* user_data;
    tw_timer* next;
    tw_timer* prev;
};

class time_wheel
{
public:
    time_wheel() : cur_slot( 0 )
    {
        for( int i = 0; i < N; ++i )
        {
            slots[i] = NULL;
        }
    }
    ~time_wheel()
    {
        for( int i = 0; i < N; ++i )
        {
            tw_timer* tmp = slots[i];
            while( tmp )
            {
                slots[i] = tmp->next;
                delete tmp;
                tmp = slots[i];
            }
        }
    }
    tw_timer* add_timer( int timeout )
    {
        if( timeout < 0 )
        {
            return NULL;
        }
        int ticks = 0;
        if( timeout < TI )
        {
            ticks = 1;
        }
        else
        {
            ticks = timeout / TI;
        }
        int rotation = ticks / N;
        int ts = ( cur_slot + ( ticks % N ) ) % N;
        tw_timer* timer = new tw_timer( rotation, ts );
        if( !slots[ts] )
        {
            printf( "add timer, rotation is %d, ts is %d, cur_slot is %d\n", rotation, ts, cur_slot );
            slots[ts] = timer;
        }
        else
        {
            timer->next = slots[ts];
            slots[ts]->prev = timer;
            slots[ts] = timer;
        }
        return timer;
    }
    void del_timer( tw_timer* timer )
    {
        if( !timer )
        {
            return;
        }
        int ts = timer->time_slot;
        if( timer == slots[ts] )
        {
            slots[ts] = slots[ts]->next;
            if( slots[ts] )
            {
                slots[ts]->prev = NULL;
            }
            delete timer;
        }
        else
        {
            timer->prev->next = timer->next;
            if( timer->next )
            {
                timer->next->prev = timer->prev;
            }
            delete timer;
        }
    }
    void tick()
    {
        tw_timer* tmp = slots[cur_slot];
        printf( "current slot is %d\n", cur_slot );
        while( tmp )
        {
            printf( "tick the timer once\n" );
            if( tmp->rotation > 0 )
            {
                tmp->rotation--;
                tmp = tmp->next;
            }
            else
            {
                tmp->cb_func( tmp->user_data );
                if( tmp == slots[cur_slot] )
                {
                    printf( "delete header in cur_slot\n" );
                    slots[cur_slot] = tmp->next;
                    delete tmp;
                    if( slots[cur_slot] )
                    {
                        slots[cur_slot]->prev = NULL;
                    }
                    tmp = slots[cur_slot];
                }
                else
                {
                    tmp->prev->next = tmp->next;
                    if( tmp->next )
                    {
                        tmp->next->prev = tmp->prev;
                    }
                    tw_timer* tmp2 = tmp->next;
                    delete tmp;
                    tmp = tmp2;
                }
            }
        }
        cur_slot = ++cur_slot % N;
    }

private:
    static const int N = 60;
    static const int TI = 1; 
    tw_timer* slots[N];
    int cur_slot;
};

#endif

時間堆

前面的定時方案都是以固定頻率調用心搏函數tick,並在其中一次檢測到期的定時器,然後執行到期定時器上的回調函數。

設計定時器的另一種思路是:將所有定時器中超時時間最小的一個定時器的超時值作爲心搏間隔,一旦心搏函數被調用,超時時間最小的定時器必然到期,就可以在tick函數中處理該定時器。然後在剩餘的定時器中找出超時時間最小的一個,並將這段最小時間設置爲下一次心搏間隔,如此反覆,就實現了較爲精確的定時。

#ifndef intIME_HEAP
#define intIME_HEAP

#include <iostream>
#include <netinet/in.h>
#include <time.h>
using std::exception;

#define BUFFER_SIZE 64

class heap_timer;
struct client_data
{
    sockaddr_in address;
    int sockfd;
    char buf[ BUFFER_SIZE ];
    heap_timer* timer;
};

class heap_timer
{
public:
    heap_timer( int delay )
    {
        expire = time( NULL ) + delay;
    }

public:
   time_t expire;
   void (*cb_func)( client_data* );
   client_data* user_data;
};

class time_heap
{
public:
    time_heap( int cap ) throw ( std::exception )
        : capacity( cap ), cur_size( 0 )
    {
    array = new heap_timer* [capacity];
    if ( ! array )
    {
            throw std::exception();
    }
        for( int i = 0; i < capacity; ++i )
        {
            array[i] = NULL;
        }
    }
    time_heap( heap_timer** init_array, int size, int capacity ) throw ( std::exception )
        : cur_size( size ), capacity( capacity )
    {
        if ( capacity < size )
        {
            throw std::exception();
        }
        array = new heap_timer* [capacity];
        if ( ! array )
        {
            throw std::exception();
        }
        for( int i = 0; i < capacity; ++i )
        {
            array[i] = NULL;
        }
        if ( size != 0 )
        {
            for ( int i =  0; i < size; ++i )
            {
                array[ i ] = init_array[ i ];
            }
            for ( int i = (cur_size-1)/2; i >=0; --i )
            {
                percolate_down( i );
            }
        }
    }
    ~time_heap()
    {
        for ( int i =  0; i < cur_size; ++i )
        {
            delete array[i];
        }
        delete [] array; 
    }

public:
    void add_timer( heap_timer* timer ) throw ( std::exception )
    {
        if( !timer )
        {
            return;
        }
        if( cur_size >= capacity )
        {
            resize();
        }
        int hole = cur_size++;
        int parent = 0;
        for( ; hole > 0; hole=parent )
        {
            parent = (hole-1)/2;
            if ( array[parent]->expire <= timer->expire )
            {
                break;
            }
            array[hole] = array[parent];
        }
        array[hole] = timer;
    }
    void del_timer( heap_timer* timer )
    {
        if( !timer )
        {
            return;
        }
        // lazy delelte
        timer->cb_func = NULL;
    }
    heap_timer* top() const
    {
        if ( empty() )
        {
            return NULL;
        }
        return array[0];
    }
    void pop_timer()
    {
        if( empty() )
        {
            return;
        }
        if( array[0] )
        {
            delete array[0];
            array[0] = array[--cur_size];
            percolate_down( 0 );
        }
    }
    void tick()
    {
        heap_timer* tmp = array[0];
        time_t cur = time( NULL );
        while( !empty() )
        {
            if( !tmp )
            {
                break;
            }
            if( tmp->expire > cur )
            {
                break;
            }
            if( array[0]->cb_func )
            {
                array[0]->cb_func( array[0]->user_data );
            }
            pop_timer();
            tmp = array[0];
        }
    }
    bool empty() const { return cur_size == 0; }

private:
    void percolate_down( int hole )
    {
        heap_timer* temp = array[hole];
        int child = 0;
        for ( ; ((hole*2+1) <= (cur_size-1)); hole=child )
        {
            child = hole*2+1;
            if ( (child < (cur_size-1)) && (array[child+1]->expire < array[child]->expire ) )
            {
                ++child;
            }
            if ( array[child]->expire < temp->expire )
            {
                array[hole] = array[child];
            }
            else
            {
                break;
            }
        }
        array[hole] = temp;
    }
    void resize() throw ( std::exception )
    {
        heap_timer** temp = new heap_timer* [2*capacity];
        for( int i = 0; i < 2*capacity; ++i )
        {
            temp[i] = NULL;
        }
        if ( ! temp )
        {
            throw std::exception();
        }
        capacity = 2*capacity;
        for ( int i = 0; i < cur_size; ++i )
        {
            temp[i] = array[i];
        }
        delete [] array;
        array = temp;
    }

private:
    heap_timer** array;
    int capacity;
    int cur_size;
};

#endif

對時間堆而言,添加一個定時器的時間複雜度爲O(lg n),刪除一個定時器的時間複雜度爲O(1),執行一個定時器的時間複雜度爲O(1)。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章