Android Volley框架源碼解析

經常接觸Android網絡編程的我們,對於Volley肯定不陌生,但我們不禁要問,對於Volley我們真的很瞭解嗎?Volley的內部是怎樣實現的?爲什麼幾行代碼就能快速搭建好一個網絡請求?我們不但要知其然,也要知其所以然,抱着這樣的目的,本文主要詳細講述Volley的源碼,對內部流程進行詳細解析。

Part 1.從RequestQueue說起

  (1)還記得搭建請求的第一步是什麼嗎?是新建一個請求隊列,比如說這樣:

RequestQueue queue = Volley.newRequestQueue(context)
  雖然表面上只是一句代碼的事情,但是背後做了很多準備工作,我們追蹤源碼,找到Volley#newRequestQueue()方法:

/**
* Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
* You may set a maximum size of the disk cache in bytes.
*
* @param context A {@link Context} to use for creating the cache dir.
* @param stack An {@link HttpStack} to use for the network, or null for default.
* @param maxDiskCacheBytes the maximum size of the disk cache, in bytes. Use -1 for default size.
* @return A started {@link RequestQueue} instance.
*/
public static RequestQueue newRequestQueue(Context context, HttpStack stack, int maxDiskCacheBytes) {
File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);

String userAgent = "volley/0";
try {
    String packageName = context.getPackageName();
    PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
    userAgent = packageName + "/" + info.versionCode;
} catch (NameNotFoundException e) {
}

 /**
   * 根據不同的系統版本號實例化不同的請求類,如果版本號小於9,用HttpClient
   * 如果版本號大於9,用HttpUrlConnection
   */
if (stack == null) {
    if (Build.VERSION.SDK_INT >= 9) {
        stack = new HurlStack();
    } else {
        // Prior to Gingerbread, HttpUrlConnection was unreliable.
        // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
        stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
    }
}
  //把實例化的stack傳遞進BasicNetwork,實例化Network
Network network = new BasicNetwork(stack);
RequestQueue queue;
if (maxDiskCacheBytes <= -1){
   // No maximum size specified
   //實例化RequestQueue類 
   queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
}
else {
   // Disk cache size specified
   queue = new RequestQueue(new DiskBasedCache(cacheDir, maxDiskCacheBytes), network);
}
 //調用RequestQueue的start()方法
queue.start();
return queue;

}
  首先我們看參數,有三個,實際上我們默認使用了只有一個參數context的方法,這個是對應的重載方法,最終調用的是三個參數的方法,context是上下文環境;stack代表需要使用的網絡連接請求類,這個一般不用設置,方法內部會根據當前系統的版本號調用不同的網絡連接請求類(HttpUrlConnection和HttpClient);最後一個參數是緩存的大小。接着我們看方法內部,這裏先創建了緩存文件,然後根據不同的系統版本號實例化不同的請求類,用stack引用這個類。接着又實例化了一個BasicNetwork,這個類在下面會說到。然後到了實際實例化請求隊列的地方:new RequestQueue(),這裏接收兩個參數,分別是緩存和network(BasicNetwork)。實例化RequestQueue後,調用了start()方法,最後返回這個RequestQueue。
  (2)我們跟着RequestQueue看看它的構造器做了哪些工作:

/**
* Creates the worker pool. Processing will not begin until {@link #start()} is called.
*
* @param cache A Cache to use for persisting responses to disk
* @param network A Network interface for performing HTTP requests
* @param threadPoolSize Number of network dispatcher threads to create
* @param delivery A ResponseDelivery interface for posting responses and errors
*/
public RequestQueue(Cache cache, Network network, int threadPoolSize,
ResponseDelivery delivery) {
mCache = cache;
mNetwork = network;
//實例化網絡請求數組,數組大小默認是4
mDispatchers = new NetworkDispatcher[threadPoolSize];
mDelivery = delivery;
}

public RequestQueue(Cache cache, Network network, int threadPoolSize) {
    this(cache, network, threadPoolSize,
            //ResponseDelivery是一個接口,實現類是ExecutorDelivery
            new ExecutorDelivery(new Handler(Looper.getMainLooper())));
}

public RequestQueue(Cache cache, Network network) {
    this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
}

  可以看到,把傳遞過來的cache和network作爲變量傳遞給了四個參數的構造器,在這裏,初始化了RequestQueue的幾個成員變量:mCache(文件緩存)、mNetwork(BasicNetwork實例)、mDispatchers(網絡請求線程數組)、以及mDelivery(派發請求結果的接口),具體意義可看上面的註解。
  (3)構造完RequestQueue後,從(1)可知,最後調用了它的start()方法,我們來看看這個方法,RequestQueue#start():

public void start() {
stop(); // Make sure any currently running dispatchers are stopped.
// Create the cache dispatcher and start it.
mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
mCacheDispatcher.start();

    // Create network dispatchers (and corresponding threads) up to the pool size.
    for (int i = 0; i < mDispatchers.length; i++) {
        NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                mCache, mDelivery);
        mDispatchers[i] = networkDispatcher;
        networkDispatcher.start();
    }
}

  首先實例化了CacheDispatcher,CacheDispatcher類繼承自Thread,接着調用了它的start()方法,開始了一條新的緩存線程。接着是一個for循環,根據設置的mDispatchers數組大小來開啓多個網絡請求線程,默認是4條網絡請求線程。
  到目前爲止,Volley.newRequestQueue()方法完成了,即我們的網絡請求第一步,建立請求隊列完成。
  先小結一下:建立請求隊列所做的工作是,創建文件緩存(默認),實例化BasicNetwork,實例化Delivery用於發送線程請求,創建一條緩存線程和四條網絡請求線程(默認)並運行。

Part 2.網絡請求的實現原理

  在創建完請求隊列後,接着就是建立一個請求,請求的方式可以是StringRequest、JsonArrayRequest或者ImageRequest等,那麼這些請求的背後原理是什麼呢?我們拿最簡單的StringRequest來說,它繼承自Request,而Request則是所有請求的父類,所以說如果你要自定義一個網絡請求,就應該繼承自Request。接下來我們看看StringRequest的源碼,因爲不管Request的子類是什麼,大體的實現思路都是一致的,所以我們弄懂了StringRequest,那麼對於其他的請求類的理解是相通的。如下是StringRequest源碼:

public class StringRequest extends Request {
private Listener mListener;

public StringRequest(int method, String url, Listener<String> listener,
        ErrorListener errorListener) {
    super(method, url, errorListener);
    mListener = listener;
}
...
@Override
protected void deliverResponse(String response) {
    if (mListener != null) {
        mListener.onResponse(response);
    }
}

@Override
protected Response<String> parseNetworkResponse(NetworkResponse response) {
    String parsed;
    try {
        parsed = new String(response.data, HttpHeaderParser.parseCharset(response.headers));
    } catch (UnsupportedEncodingException e) {
        parsed = new String(response.data);
    }
    return Response.success(parsed, HttpHeaderParser.parseCacheHeaders(response));
}

}
  源碼並不長,我們主要關注的是deliverResponse方法和parseNetworkResponse。可以看出,這兩個方法都是重寫的,我們翻看父類Request的對應方法,發現是抽象方法,說明這兩個方法在每一個自定義的Request中都必須重寫。這裏簡單說說這兩個方法的作用。先看deliverResponse方法:它內部調用了mListener.onResponse(response)方法,而這個方法正是我們在寫一個請求的時候,添加的listener所重寫的onResponse方法,也就是說,響應成功後在這裏調用了onResponse()方法。接着看pareNetworkResponse方法,可以看出這裏主要是對response響應做出一些處理。可以對比一下不同請求類的這個方法,都會不同的,所以說,這個方法是針對不同的請求類型而對響應做出不同的處理。比如說,如果是StringRequest,則將響應包裝成String類型;如果是JsonObjectRequest,則將響應包裝成JsonObject。那麼現在應該清楚了:對於想要得到某一種特殊類型的請求,我們可以自定義一個Request,重寫這兩個方法即可。
  這裏小結一下:Request類做的工作主要是初始化一些參數,比如說請求類型、請求的url、錯誤的回調方法;而它的任一子類重寫deliverResponse方法來實現成功的回調,重寫parseNetworkResponse()方法來處理響應數據;至此,一個完整的Request請求搭建完畢。

Part 3.添加請求

  前面已經完成了請求隊列的創建,Request請求的創建,那麼接下來就是把請求添加進隊列了。我們看RequestQueue#add()源碼:

/**
* Adds a Request to the dispatch queue.
* @param request The request to service
* @return The passed-in request
*/
public Request add(Request request) {
// Tag the request as belonging to this queue and add it to the set of current requests.
//標記當前請求,表示這個請求由當前RequestQueue處理
request.setRequestQueue(this);
synchronized (mCurrentRequests) {
mCurrentRequests.add(request);
}
// Process requests in the order they are added.
//獲得當前請求的序號
request.setSequence(getSequenceNumber());
request.addMarker(“add-to-queue”);
// If the request is uncacheable, skip the cache queue and go straight to the network.
//如果請求不能緩存,直接添加到網絡請求隊列,默認是可以緩存
if (!request.shouldCache()) {
mNetworkQueue.add(request);
return request;
}

// Insert request into stage if there's already a request with the same cache key in flight.
// 鎖定當前代碼塊,只能一條線程執行
synchronized (mWaitingRequests) {
    String cacheKey = request.getCacheKey();

    //是否有相同請求正在處理
    if (mWaitingRequests.containsKey(cacheKey)) {
        // There is already a request in flight. Queue up.
        //如果有相同請求正在處理,那麼把這個請求放進mWaitingRequest中,等待。
        Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
        if (stagedRequests == null) {
            stagedRequests = new LinkedList<Request<?>>();
        }
        stagedRequests.add(request);
        mWaitingRequests.put(cacheKey, stagedRequests);
        if (VolleyLog.DEBUG) {
            VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
        }
    } else {
        // Insert 'null' queue for this cacheKey, indicating there is now a request in
        // flight.
        //沒有相同的請求,那麼把請求放進mWaitingRequests中,同時也放進mCacheQueue緩存隊列中
        //這代表這個請求已經開始在緩存線程中運行了
        mWaitingRequests.put(cacheKey, null);
        mCacheQueue.add(request);
    }
    return request;
}

}
  結合相應的註釋,我們得出如下結論:在這個add方法中,主要判斷一個Request請求是否可以緩存(默認是可以緩存的),如果不可以則直接添加到網絡請求隊列開始網絡通信;如果可以,則進一步判斷當前是否有相同的請求正在進行,如果有相同的請求,則讓這個請求排隊等待,如果沒有相同的請求,則直接放進緩存隊列中。如果對此還有什麼疑問,可以看下面的流程圖(圖片來自網絡):

RequestQueue#add()方法流程圖
Part 4.緩存線程

  在part1的最後實例化了緩存線程並開始運行,一直處於等待狀態,而上面把請求添加進了緩存線程,此時緩存線程就開始真正的工作了。我們來看緩存線程的源碼,主要看它的run()方法,CacheDispatcher#run():

@Override
public void run() {
if (DEBUG) VolleyLog.v(“start new dispatcher”);
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

// Make a blocking call to initialize the cache.
mCache.initialize();

Request<?> request;
while (true) {
    // release previous request object to avoid leaking request object when mQueue is drained.
    request = null;
    try {
        // Take a request from the queue.
        //從緩存隊列中取出請求
        request = mCacheQueue.take();
    } ...
    try {
        request.addMarker("cache-queue-take");

        // If the request has been canceled, don't bother dispatching it.
        if (request.isCanceled()) {
            request.finish("cache-discard-canceled");
            continue;
        }

        // Attempt to retrieve this item from cache.
        //從文件緩存中取出這個請求的結果
        Cache.Entry entry = mCache.get(request.getCacheKey());
        if (entry == null) {
            request.addMarker("cache-miss");
            // Cache miss; send off to the network dispatcher.
            mNetworkQueue.put(request);
            continue;
        }

        // If it is completely expired, just send it to the network.
        //判斷緩存是否過期
        if (entry.isExpired()) {
            request.addMarker("cache-hit-expired");
            request.setCacheEntry(entry);
            mNetworkQueue.put(request);
            continue;
        }

        // We have a cache hit; parse its data for delivery back to the request.
        request.addMarker("cache-hit");
        //先將響應的結果包裝成NetworkResponse,然後調用Request子類的
        //parseNetworkResponse方法解析數據
        Response<?> response = request.parseNetworkResponse(
                new NetworkResponse(entry.data, entry.responseHeaders));
        request.addMarker("cache-hit-parsed");

        if (!entry.refreshNeeded()) {
            // Completely unexpired cache hit. Just deliver the response.
            //調用ExecutorDelivey#postResponse方法
            mDelivery.postResponse(request, response);
        } else {
            ....
        }
    } catch (Exception e) {
        VolleyLog.e(e, "Unhandled exception %s", e.toString());
    }
}

}
  在run()方法中,我們可以看到最開始有一個while(true)循環,表示它一直在等待緩存隊列的新請求的出現。接着,先判斷這個請求是否有對應的緩存結果,如果沒有則直接添加到網絡請求隊列;接着再判斷這個緩存結果是否過期了,如果過期則同樣地添加到網絡請求隊列;接下來便是對緩存結果的處理了,我們可以看到,先是把緩存結果包裝成NetworkResponse類,然後調用了Request的parseNetworkResponse,這個方法我們在part2說過,子類需要重寫這個方法來處理響應數據。最後,把處理好的數據post到主線程,這裏用到了ExecutorDelivery#postResponse()方法,下面會分析到。
  小結:CacheDispatcher線程主要對請求進行判斷,是否已經有緩存,是否已經過期,根據需要放進網絡請求隊列。同時對相應結果進行包裝、處理,然後交由ExecutorDelivery處理。這裏以一張流程圖顯示它的完整工作流程:

CacheDispatcher線程工作流程
Part 5.網絡請求線程

  上面提到,請求不能緩存、緩存結果不存在、緩存過期的時候會把請求添加進請求隊列,此時一直等待的網絡請求線程由於獲取到請求,終於要開始工作了,我們來看NetworkDispatcher#run()方法:

@Override
public void run() {
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
Request

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章