YOLO v2-原理

论文: YOLO9000:Better,Faster,Stronger 
论文链接:https://arxiv.org/abs/1612.08242

参考:https://blog.csdn.net/u014380165/article/details/77961414

YOLO9000是CVPR2017的最佳论文提名。首先讲一下这篇文章一共介绍了YOLO v2和YOLO9000两个模型,二者略有不同。前者主要是YOLO的升级版(关于YOLO v1的介绍可以参考:YOLO v1算法详解),后者的主要检测网络也是YOLO v2,同时对数据集做了融合,使得模型可以检测9000多类物体。而提出YOLO9000的原因主要是目前检测的数据集数据量较小,因此利用数量较大的分类数据集来帮助训练检测模型。

接下来基本上按照文章的顺序来解读一下算法,这样读起来也比较清晰。主要包括三个部分:Better,Faster,Stronger,其中前面两部分基本上讲的是YOLO v2,最后一部分讲的是YOLO9000。
 

Better

Batch Normalization

        在所有卷积层加入批归一化,移除dropout层

High Resolution Classifier

        首先fine-tuning的作用不言而喻,现在基本跑个classification或detection的模型都不会从随机初始化所有参数开始,所以一般都是用预训练的网络来finetuning自己的网络,而且预训练的网络基本上都是在ImageNet数据集上跑的,一方面数据量大,另一方面训练时间久,而且这样的网络都可以在相应的github上找到。 

先在分类网络,以448x448大小输入,迭代10个epochs,然后在检测网络上微调。提升4% mAP。

Convolutional with Anchor Boxes

       借鉴Faster-RCNN的思想,用anchor boxes预测bounding boxes。去掉一个池化层,增大卷积层输出的分辨率;实际输入减小为416而不是448,输出特征图大小13x13.。

虽然加入anchor使得MAP值下降了一点(69.5降到69.2),但是提高了recall(81%提高到88%)

Dimension Clusters

我们知道在Faster R-CNN中anchor box的大小和比例是按经验设定的,然后网络会在训练过程中调整anchor box的尺寸。但是如果一开始就能选择到合适尺寸的anchor box,那肯定可以帮助网络越好地预测detection。所以作者采用k-means的方式对训练集的bounding boxes做聚类,试图找到合适的anchor box。

另外作者发现如果采用标准的k-means(即用欧式距离来衡量差异),在box的尺寸比较大的时候其误差也更大,而我们希望的是误差和box的尺寸没有太大关系。所以通过IOU定义了如下的距离函数,使得误差和box的大小无关:

这里写图片描述

最后选择k=5,而且发现聚类的结果和手动设置的anchor box大小差别显著。聚类的结果中多是高瘦的box,而矮胖的box数量较少。

Direct location prediction

作者在引入anchor box的时候遇到的第二个问题:模型不稳定,尤其是在训练刚开始的时候。作者认为这种不稳定主要来自预测box的(x,y)值。我们知道在基于region proposal的object detection算法中,是通过预测下图中的tx和ty来得到(x,y)值,也就是预测的是offset。

Fine-Grained Features

加了一层passthrough layer,将前一层26x26的feature map与13x13的feature map连接,类似于Resnet。结合了不同分辨率,mAP提升1%。

Multi-scale Training

每10个batch随机选择一个新的输入Size,注意这一步是在检测数据集上fine tune时候采用的,不要跟前面在Imagenet数据集上的两步预训练分类模型混淆,本文细节确实很多。

Faster

Darknet-19

大多数检测网络依赖vgg-16,但是vgg-16太复杂了。YOLO用了Googlenet,速度快了一些但是准确率下降了2%。本文提出了darknet-19,这个网络包含19个卷积层和5个max pooling层,而在YOLO v1中采用的GooleNet,包含24个卷积层和2个全连接层,因此Darknet-19整体上卷积卷积操作比YOLO v1中用的GoogleNet要少,这是计算量减少的关键。最后用average pooling层代替全连接层进行预测。这个网络在ImageNet上取得了top-5的91.2%的准确率。

 

Training for Classification 


这里的2和3部分在前面有提到,就是训练处理的小trick。这里的training for classification都是在ImageNet上进行预训练,主要分两步:1、从头开始训练Darknet-19,数据集是ImageNet,训练160个epoch,输入图像的大小是224*224,初始学习率为0.1。另外在训练的时候采用了标准的数据增加方式比如随机裁剪,旋转以及色度,亮度的调整等。2、再fine-tuning 网络,这时候采用448*448的输入,参数的除了epoch和learning rate改变外,其他都没变,这里learning rate改为0.001,并训练10个epoch。结果表明fine-tuning后的top-1准确率为76.5%,top-5准确率为93.3%,而如果按照原来的训练方式,Darknet-19的top-1准确率是72.9%,top-5准确率为91.2%。因此可以看出第1,2两步分别从网络结构和训练方式两方面入手提高了主网络的分类准确率。

Training for Detection 


在前面第2步之后,就开始把网络移植到detection,并开始基于检测的数据再进行fine-tuning。首先把最后一个卷积层去掉,然后添加3个3*3的卷积层,每个卷积层有1024个filter,而且每个后面都连接一个1*1的卷积层,1*1卷积的filter个数根据需要检测的类来定。比如对于VOC数据,由于每个grid cell我们需要预测5个box,每个box有5个座标值和20个类别值,所以每个grid cell有125个filter(与YOLOv1不同,在YOLOv1中每个grid cell有30个filter,还记得那个7*7*30的矩阵吗,而且在YOLOv1中,类别概率是由grid cell来预测的,也就是说一个grid cell对应的两个box的类别概率是一样的,但是在YOLOv2中,类别概率是属于box的,每个box对应一个类别概率,而不是由grid cell决定,因此这边每个box对应25个预测值(5个座标加20个类别值),而在YOLOv1中一个grid cell的两个box的20个类别值是一样的)。另外作者还提到将最后一个3*3*512的卷积层和倒数第二个卷积层相连。最后作者在检测数据集上fine tune这个预训练模型160个epoch,学习率采用0.001,并且在第60和90epoch的时候将学习率除以10,weight decay采用0.0005。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章