NLP教程:教你如何自動生成對聯

桃符早易硃紅紙,楊柳輕搖翡翠羣 ——FlyAI Couplets
體驗對對聯Demo: https://www.flyai.com/couplets

微信公衆號條圖.png

循環神經網絡最重要的特點就是可以將序列作爲輸入和輸出,而對聯的上聯和下聯都是典型的序列文字,那麼,能否使用神經網絡進行對對聯呢?答案是肯定的。本項目使用網絡上收集的對聯數據集地址作爲訓練數據,運用Seq2Seq + 注意力機制網絡完成了根據上聯對下聯的任務。

項目流程

  1. 數據處理
  2. Seq2Seq + Attention 模型解讀
  3. 模型代碼實現
  4. 訓練神經網絡

數據處理
創建詞向量字典和詞袋字典

在原始數據集中,對聯中每個漢字使用空格進行分割,格式如下所示:

​    室 內 崇 蘭 映 日,林 間 修 竹 當 風

​    翠 岸 青 荷 , 琴 曲 瀟 瀟 情 輾 轉,寒 山 古 月 , 風 聲 瑟 瑟 意 彷 徨

由於每個漢字表示一個單一的詞,因此不需要對原始數據進行分詞。在獲取原始數據之後,需要創建兩個字典,分別是字到詞向量的字典和字到詞袋的字典,這樣做是爲了將詞向量輸入到網絡中,而輸出處使用詞袋進行分類。在詞袋模型中,添加三個關鍵字 ' “ ', ' ” ' 和 ' ~ ' ,分別代表輸入輸出的起始,結束和空白處的補零,其關鍵字分別爲1,2,0。

class Processor(Base): ## Processor是進行數據處理的類

    def __init__(self):
        super(Processor, self).__init__()    
        embedding_path = os.path.join(DATA_PATH, 'embedding.json') ##加載詞向量字典
        words_list_path = os.path.join(DATA_PATH, 'words.json') ## 加載詞袋列表
        with open(embedding_path, encoding='utf-8') as f:
            self.vocab = json.loads(f.read())
        with open(words_list_path, encoding='utf-8') as f:
            word_list = json.loads(f.read())
            self.word2ix = {w:i for i,w in enumerate(word_list, start = 3)}
            self.word2ix['“'] = 1 ##句子開頭爲1
            self.word2ix['”'] = 2 ##句子結尾爲2
            self.word2ix['~'] = 0 ##padding的內容爲0
            self.ix2word = {i:w for w,i in self.word2ix.items()}
               self.max_sts_len = 40 ##最大序列長度
對上聯進行詞向量編碼
def input_x(self, upper): ##upper爲輸入的上聯

        word_list = []
        #review = upper.strip().split(' ')
        review = ['“'] + upper.strip().split(' ') + ['”'] ##開頭加符號1,結束加符號2
        for word in review:                        
            embedding_vector = self.vocab.get(word)
            if embedding_vector is not None:
                if len(embedding_vector) == 200:
                # 給出現在編碼詞典中的詞彙編碼
                    embedding_vector = list(map(lambda x: float(x),embedding_vector)) ## convert element type from str to float in the list
                    word_list.append(embedding_vector)   
        
        if len(word_list) >= self.max_sts_len:
            word_list = word_list[:self.max_sts_len]
            origanal_len = self.max_sts_len
        else:
            origanal_len = len(word_list)
            for i in range(len(word_list), self.max_sts_len):
                word_list.append([0 for j in range(200)]) ## 詞向量維度爲200
        word_list.append([origanal_len for j in range(200)]) ## 最後一行元素爲句子實際長度
        word_list = np.stack(word_list)                
        return word_list
對真實下聯進行詞袋編碼
def input_y(self, lower):

        word_list = [1] ##開頭加起始符號1
        for word in lower:
            word_idx = self.word2ix.get(word)
            if word_idx is not None:
                word_list.append(word_idx)
                
        word_list.append(2) ##結束加終止符號2
        origanal_len = len(word_list)
        if len(word_list) >= self.max_sts_len:
            origanal_len = self.max_sts_len
            word_list = word_list[:self.max_sts_len]
        else:
            origanal_len = len(word_list)
            for i in range(len(word_list), self.max_sts_len):
                word_list.append(0) ## 不夠長度則補0  
        word_list.append(origanal_len) ##最後一個元素爲句子長度
        return word_list
Seq2Seq + Attention 模型解讀

Seq2Seq 模型可以被認爲是一種由編碼器和解碼器組成的翻譯器,其結構如下圖所示:image
編碼器(Encoder)和解碼器(Decoder)通常使用RNN構成,爲提高效果,RNN通常使用LSTM或RNN,在上圖中的RNN即是使用LSTM。Encoder將輸入翻譯爲中間狀態C,而Decoder將中間狀態翻譯爲輸出。序列中每一個時刻的輸出由的隱含層狀態,前一個時刻的輸出值及中間狀態C共同決定。

Attention 機制

在早先的Seq2Seq模型中,中間狀態C僅由最終的隱層決定,也就是說,源輸入中的每個單詞對C的重要性是一樣的。這種方式在一定程度上降低了輸出對位置的敏感性。而Attention機制正是爲了彌補這一缺陷而設計的。在Attention機制中,中間狀態C具有了位置信息,即每個位置的C都不相同,第i個位置的C由下面的公式決定:

image

公式中,Ci代表第i個位置的中間狀態C,Lx代表輸入序列的全部長度,hj是第j個位置的Encoder隱層輸出,而aij爲第i個C與第j個h之間的權重。通過這種方式,對於每個位置的源輸入就產生了不同的C,也就是實現了對不同位置單詞的‘注意力’。權重aij有很多的計算方式,本項目中使用使用小型神經網絡進行映射的方式產生aij。

模型代碼實現
Encoder

Encoder的結構非常簡單,是一個簡單的RNN單元,由於本項目中輸入數據是已經編碼好的詞向量,因此不需要使用nn.Embedding() 對input進行編碼。

class Encoder(nn.Module):
    def __init__(self, embedding_dim, hidden_dim, num_layers=2, dropout=0.2):
        super().__init__()

        self.embedding_dim = embedding_dim #詞向量維度,本項目中是200維
        self.hidden_dim = hidden_dim #RNN隱層維度
        self.num_layers = num_layers #RNN層數
        self.dropout = dropout  #dropout

        self.rnn = nn.GRU(embedding_dim, hidden_dim,
                          num_layers=num_layers, dropout=dropout)

        self.dropout = nn.Dropout(dropout) #dropout層

    def forward(self, input_seqs, input_lengths, hidden=None):
        # src = [sent len, batch size]
        embedded = self.dropout(input_seqs)
        # embedded = [sent len, batch size, emb dim]
        packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths) #將輸入轉換成torch中的pack格式,使得RNN輸入的是真實長度的句子而非padding後的
        #outputs, hidden = self.rnn(packed, hidden)
        outputs, hidden = self.rnn(packed)
        outputs, output_lengths = torch.nn.utils.rnn.pad_packed_sequence(outputs)
        # outputs, hidden = self.rnn(embedded, hidden)
        # outputs = [sent len, batch size, hid dim * n directions]
        # hidden = [n layers, batch size, hid dim]
        # outputs are always from the last layer
        return outputs, hidden
Attentation機制

Attentation權重的計算方式主要有三種,本項目中使用concatenate的方式進行注意力權重的運算。代碼實現如下:

class Attention(nn.Module):
    def __init__(self, hidden_dim):
        super(Attention, self).__init__()
        self.hidden_dim = hidden_dim
        self.attn = nn.Linear(self.hidden_dim * 2, hidden_dim)
        self.v = nn.Parameter(torch.rand(hidden_dim))
        self.v.data.normal_(mean=0, std=1. / np.sqrt(self.v.size(0)))

    def forward(self, hidden, encoder_outputs):
        #  encoder_outputs:(seq_len, batch_size, hidden_size)
        #  hidden:(num_layers * num_directions, batch_size, hidden_size)
        max_len = encoder_outputs.size(0)
        h = hidden[-1].repeat(max_len, 1, 1)
        # (seq_len, batch_size, hidden_size)
        attn_energies = self.score(h, encoder_outputs)  # compute attention score
        return F.softmax(attn_energies, dim=1)  # normalize with softmax

    def score(self, hidden, encoder_outputs):
        # (seq_len, batch_size, 2*hidden_size)-> (seq_len, batch_size, hidden_size)
        energy = torch.tanh(self.attn(torch.cat([hidden, encoder_outputs], 2)))
        energy = energy.permute(1, 2, 0)  # (batch_size, hidden_size, seq_len)
        v = self.v.repeat(encoder_outputs.size(1), 1).unsqueeze(1)  # (batch_size, 1, hidden_size)
        energy = torch.bmm(v, energy)  # (batch_size, 1, seq_len)
        return energy.squeeze(1)  # (batch_size, seq_len)
Decoder

Decoder同樣是一個RNN網絡,它的輸入有三個,分別是句子初始值,hidden tensor 和Encoder的output tensor。在本項目中句子的初始值爲‘“’代表的數字1。由於初始值tensor使用的是詞袋編碼,需要將詞袋索引也映射到詞向量維度,這樣才能與其他tensor合併。完整的Decoder代碼如下所示:

class Decoder(nn.Module):
    def __init__(self, output_dim, embedding_dim, hidden_dim, num_layers=2, dropout=0.2):
        super().__init__()

        self.embedding_dim = embedding_dim ##編碼維度
        self.hid_dim = hidden_dim ##RNN隱層單元數
        self.output_dim = output_dim ##詞袋大小
        self.num_layers = num_layers ##RNN層數
        self.dropout = dropout

        self.embedding = nn.Embedding(output_dim, embedding_dim)
        self.attention = Attention(hidden_dim)
        self.rnn = nn.GRU(embedding_dim + hidden_dim, hidden_dim,
                          num_layers=num_layers, dropout=dropout)
        self.out = nn.Linear(embedding_dim + hidden_dim * 2, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, input, hidden, encoder_outputs):
        # input = [bsz]
        # hidden = [n layers * n directions, batch size, hid dim]
        # encoder_outputs = [sent len, batch size, hid dim * n directions]
        input = input.unsqueeze(0)
        # input = [1, bsz]
        embedded = self.dropout(self.embedding(input))
        # embedded = [1, bsz, emb dim]
        attn_weight = self.attention(hidden, encoder_outputs)
        # (batch_size, seq_len)
        context = attn_weight.unsqueeze(1).bmm(encoder_outputs.transpose(0, 1)).transpose(0, 1)
        # (batch_size, 1, hidden_dim * n_directions)
        # (1, batch_size, hidden_dim * n_directions)
        emb_con = torch.cat((embedded, context), dim=2)
        # emb_con = [1, bsz, emb dim + hid dim]
        _, hidden = self.rnn(emb_con, hidden)
        # outputs = [sent len, batch size, hid dim * n directions]
        # hidden = [n layers * n directions, batch size, hid dim]
        output = torch.cat((embedded.squeeze(0), hidden[-1], context.squeeze(0)), dim=1)
        output = F.log_softmax(self.out(output), 1)
        # outputs = [sent len, batch size, vocab_size]
        return output, hidden, attn_weight

在此之上,定義一個完整的Seq2Seq類,將Encoder和Decoder結合起來。在該類中,有一個叫做teacher_forcing_ratio的參數,作用爲在訓練過程中強制使得網絡模型的輸出在一定概率下更改爲ground truth,這樣在反向傳播時有利於模型的收斂。該類中有兩個方法,分別在訓練和預測時應用。Seq2Seq類名稱爲Net,代碼如下所示:

class Net(nn.Module):
    def __init__(self, encoder, decoder, device, teacher_forcing_ratio=0.5):
        super().__init__()

        self.encoder = encoder.to(device)
        self.decoder = decoder.to(device)
        self.device = device
        self.teacher_forcing_ratio = teacher_forcing_ratio

    def forward(self, src_seqs, src_lengths, trg_seqs):
        # src_seqs = [sent len, batch size]
        # trg_seqs = [sent len, batch size]
        batch_size = src_seqs.shape[1]
        max_len = trg_seqs.shape[0]
        trg_vocab_size = self.decoder.output_dim
        # tensor to store decoder outputs
        outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
        # hidden used as the initial hidden state of the decoder
        # encoder_outputs used to compute context
        encoder_outputs, hidden = self.encoder(src_seqs, src_lengths)
        # first input to the decoder is the <sos> tokens
        output = trg_seqs[0, :]

        for t in range(1, max_len): # skip sos
            output, hidden, _ = self.decoder(output, hidden, encoder_outputs)
            outputs[t] = output
            teacher_force = random.random() < self.teacher_forcing_ratio
            output = (trg_seqs[t] if teacher_force else output.max(1)[1])
        return outputs

    def predict(self, src_seqs, src_lengths, max_trg_len=30, start_ix=1):
        max_src_len = src_seqs.shape[0]
        batch_size = src_seqs.shape[1]
        trg_vocab_size = self.decoder.output_dim
        outputs = torch.zeros(max_trg_len, batch_size, trg_vocab_size).to(self.device)
        encoder_outputs, hidden = self.encoder(src_seqs, src_lengths)
        output = torch.LongTensor([start_ix] * batch_size).to(self.device)
        attn_weights = torch.zeros((max_trg_len, batch_size, max_src_len))
        for t in range(1, max_trg_len):
            output, hidden, attn_weight = self.decoder(output, hidden, encoder_outputs)
            outputs[t] = output
            output = output.max(1)[1]
            #attn_weights[t] = attn_weight
        return outputs, attn_weights
訓練神經網絡

訓練過程包括定義損失函數,優化器,數據處理,梯隊下降等過程。由於網絡中tensor型狀爲(sentence len, batch, embedding), 而加載的數據形狀爲(batch, sentence len, embedding),因此有些地方需要進行轉置。

定義網絡,輔助類等代碼如下所示:

# 數據獲取輔助類
data = Dataset()
en=Encoder(200,64) ##詞向量維度200,rnn隱單元64
de=Decoder(9133,200,64) ##詞袋大小9133,詞向量維度200,rnn隱單元64
network = Net(en,de,device) ##定義Seq2Seq實例
loss_fn = nn.CrossEntropyLoss() ##使用交叉熵損失函數

optimizer = Adam(network.parameters()) ##使用Adam優化器

model = Model(data)
訓練過程如下所示:
lowest_loss = 10
# 得到訓練和測試的數據
for epoch in range(args.EPOCHS):
    network.train()
    
    # 得到訓練和測試的數據
    x_train, y_train, x_test, y_test = data.next_batch(args.BATCH)  # 讀取數據; shape:(sen_len,batch,embedding)
    #x_train shape: (batch,sen_len,embed_dim)
    #y_train shape: (batch,sen_len)
    batch_len = y_train.shape[0]
    #input_lengths = [30 for i in range(batch_len)] ## batch內每個句子的長度
    input_lengths = x_train[:,-1,0]
    input_lengths = input_lengths.tolist()
    #input_lengths = list(map(lambda x: int(x),input_lengths))
    input_lengths = [int(x) for x in input_lengths]
    y_lengths = y_train[:,-1]
    y_lengths = y_lengths.tolist()
    
    x_train = x_train[:,:-1,:] ## 除去長度信息
    x_train = torch.from_numpy(x_train) #shape:(batch,sen_len,embedding)
    x_train = x_train.float().to(device) 
    y_train = y_train[:,:-1] ## 除去長度信息
    y_train = torch.from_numpy(y_train) #shape:(batch,sen_len)
    y_train = torch.LongTensor(y_train)
    y_train = y_train.to(device) 

    seq_pairs = sorted(zip(x_train.contiguous(), y_train.contiguous(),input_lengths), key=lambda x: x[2], reverse=True)
    #input_lengths = sorted(input_lengths, key=lambda x: input_lengths, reverse=True)
    x_train, y_train,input_lengths = zip(*seq_pairs)
    x_train = torch.stack(x_train,dim=0).permute(1,0,2).contiguous()
    y_train = torch.stack(y_train,dim=0).permute(1,0).contiguous()

    outputs = network(x_train,input_lengths,y_train)
    
    #_, prediction = torch.max(outputs.data, 2)
        
    optimizer.zero_grad()
    outputs = outputs.float()
    # calculate the loss according to labels
    loss = loss_fn(outputs.view(-1, outputs.shape[2]), y_train.view(-1))

    # backward transmit loss
    loss.backward()
    # adjust parameters using Adam
    optimizer.step()
    print(loss)

    # 若測試準確率高於當前最高準確率,則保存模型

    if loss < lowest_loss:
        lowest_loss = loss
        model.save_model(network, MODEL_PATH, overwrite=True)
        print("step %d, best lowest_loss %g" % (epoch, lowest_loss))
    print(str(epoch) + "/" + str(args.EPOCHS))
小結

通過使用Seq2Seq + Attention模型,我們完成了使用神經網絡對對聯的任務。經過十餘個週期的訓練後,神經網絡將會對出與上聯字數相同的下聯,但是,若要對出工整的對聯,還需訓練更多的週期,讀者也可以嘗試其他的方法來提高對仗的工整性。


體驗對對聯Demo: https://www.flyai.com/couplets
獲取更多項目樣例開源代碼 請PC端訪問:www.flyai.com

微信公衆號條圖.png

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章