zookeeper原理及應用

1.ZooKeeper是什麼?
ZooKeeper是一個分佈式的,開放源碼的分佈式應用程序協調服務,是Google的Chubby一個開源的實現,它是集羣的管理者,監視着集羣中各個節點的狀態根據節點提交的反饋進行下一步合理操作。最終,將簡單易用的接口和性能高效、功能穩定的系統提供給用戶

2.ZooKeeper提供了什麼?

1)文件系統

2)通知機制

3.Zookeeper文件系統

每個子目錄項如 NameService 都被稱作爲znode,和文件系統一樣,我們能夠自由的增加、刪除znode,在一個znode下增加、刪除子znode,唯一的不同在於znode是可以存儲數據的。 

有四種類型的znode: 

1、PERSISTENT-持久化目錄節點 

客戶端與zookeeper斷開連接後,該節點依舊存在 

2、PERSISTENT_SEQUENTIAL-持久化順序編號目錄節點 

客戶端與zookeeper斷開連接後,該節點依舊存在,只是Zookeeper給該節點名稱進行順序編號 

3、EPHEMERAL-臨時目錄節點 

客戶端與zookeeper斷開連接後,該節點被刪除 

4、EPHEMERAL_SEQUENTIAL-臨時順序編號目錄節點 

客戶端與zookeeper斷開連接後,該節點被刪除,只是Zookeeper給該節點名稱進行順序編號 

<ignore_js_op> 

4.Zookeeper通知機制

客戶端註冊監聽它關心的目錄節點,當目錄節點發生變化(數據改變、被刪除、子目錄節點增加刪除)時,zookeeper會通知客戶端。

5.Zookeeper做了什麼?

1.命名服務   2.配置管理   3.集羣管理   4.分佈式鎖  5.隊列管理

6.Zookeeper命名服務

在zookeeper的文件系統裏創建一個目錄,即有唯一的path。在我們使用tborg無法確定上游程序的部署機器時即可與下游程序約定好path,通過path即能互相探索發現。

7.Zookeeper的配置管理

程序總是需要配置的,如果程序分散部署在多臺機器上,要逐個改變配置就變得困難。現在把這些配置全部放到zookeeper上去,保存在 Zookeeper 的某個目錄節點中,然後所有相關應用程序對這個目錄節點進行監聽,一旦配置信息發生變化,每個應用程序就會收到 Zookeeper 的通知,然後從 Zookeeper 獲取新的配置信息應用到系統中就好

<ignore_js_op> 

8.Zookeeper集羣管理

所謂集羣管理無在乎兩點:是否有機器退出和加入、選舉master。 

對於第一點,所有機器約定在父目錄GroupMembers下創建臨時目錄節點,然後監聽父目錄節點的子節點變化消息。一旦有機器掛掉,該機器與 zookeeper的連接斷開,其所創建的臨時目錄節點被刪除,所有其他機器都收到通知:某個兄弟目錄被刪除,於是,所有人都知道:它上船了。

新機器加入也是類似,所有機器收到通知:新兄弟目錄加入,highcount又有了,對於第二點,我們稍微改變一下,所有機器創建臨時順序編號目錄節點,每次選取編號最小的機器作爲master就好。

<ignore_js_op> 

9.Zookeeper分佈式鎖

有了zookeeper的一致性文件系統,鎖的問題變得容易。鎖服務可以分爲兩類,一個是保持獨佔,另一個是控制時序。 

對於第一類,我們將zookeeper上的一個znode看作是一把鎖,通過createznode的方式來實現。所有客戶端都去創建 /distribute_lock 節點,最終成功創建的那個客戶端也即擁有了這把鎖。用完刪除掉自己創建的distribute_lock 節點就釋放出鎖。 

對於第二類, /distribute_lock 已經預先存在,所有客戶端在它下面創建臨時順序編號目錄節點,和選master一樣,編號最小的獲得鎖,用完刪除,依次方便。

<ignore_js_op> 

10.Zookeeper隊列管理

兩種類型的隊列:

1、同步隊列,當一個隊列的成員都聚齊時,這個隊列纔可用,否則一直等待所有成員到達。 

2、隊列按照 FIFO 方式進行入隊和出隊操作。 

第一類,在約定目錄下創建臨時目錄節點,監聽節點數目是否是我們要求的數目。 

第二類,和分佈式鎖服務中的控制時序場景基本原理一致,入列有編號,出列按編號。

11.分佈式與數據複製 

Zookeeper作爲一個集羣提供一致的數據服務,自然,它要在所有機器間做數據複製。數據複製的好處: 

1、容錯:一個節點出錯,不致於讓整個系統停止工作,別的節點可以接管它的工作; 

2、提高系統的擴展能力 :把負載分佈到多個節點上,或者增加節點來提高系統的負載能力; 

3、提高性能:讓客戶端本地訪問就近的節點,提高用戶訪問速度。 

從客戶端讀寫訪問的透明度來看,數據複製集羣系統分下面兩種: 

1、寫主(WriteMaster) :對數據的修改提交給指定的節點。讀無此限制,可以讀取任何一個節點。這種情況下客戶端需要對讀與寫進行區別,俗稱讀寫分離; 

2、寫任意(Write Any):對數據的修改可提交給任意的節點,跟讀一樣。這種情況下,客戶端對集羣節點的角色與變化透明。

對zookeeper來說,它採用的方式是寫任意。通過增加機器,它的讀吞吐能力和響應能力擴展性非常好,而寫,隨着機器的增多吞吐能力肯定下降(這也是它建立observer的原因),而響應能力則取決於具體實現方式,是延遲複製保持最終一致性,還是立即複製快速響應。

12.Zookeeper角色描述

<ignore_js_op> 

13.Zookeeper與客戶端

<ignore_js_op> 

14.Zookeeper設計目的

1.最終一致性:client不論連接到哪個Server,展示給它都是同一個視圖,這是zookeeper最重要的性能。 

2.可靠性:具有簡單、健壯、良好的性能,如果消息被到一臺服務器接受,那麼它將被所有的服務器接受。 

3.實時性:Zookeeper保證客戶端將在一個時間間隔範圍內獲得服務器的更新信息,或者服務器失效的信息。但由於網絡延時等原因,Zookeeper不能保證兩個客戶端能同時得到剛更新的數據,如果需要最新數據,應該在讀數據之前調用sync()接口。 

4.等待無關(wait-free):慢的或者失效的client不得干預快速的client的請求,使得每個client都能有效的等待。 

5.原子性:更新只能成功或者失敗,沒有中間狀態。 

6.順序性:包括全局有序和偏序兩種:全局有序是指如果在一臺服務器上消息a在消息b前發佈,則在所有Server上消息a都將在消息b前被髮布;偏序是指如果一個消息b在消息a後被同一個發送者發佈,a必將排在b前面。 

15.Zookeeper工作原理

Zookeeper 的核心是原子廣播,這個機制保證了各個Server之間的同步。實現這個機制的協議叫做Zab協議。Zab協議有兩種模式,它們分別是恢復模式(選主)和廣播模式(同步)。當服務啓動或者在領導者崩潰後,Zab就進入了恢復模式,當領導者被選舉出來,且大多數Server完成了和 leader的狀態同步以後,恢復模式就結束了。狀態同步保證了leader和Server具有相同的系統狀態。 

爲了保證事務的順序一致性,zookeeper採用了遞增的事務id號(zxid)來標識事務。所有的提議(proposal)都在被提出的時候加上了zxid。實現中zxid是一個64位的數字,它高32位是epoch用來標識leader關係是否改變,每次一個leader被選出來,它都會有一個新的epoch,標識當前屬於那個leader的統治時期。低32位用於遞增計數。

16.Zookeeper 下 Server工作狀態

每個Server在工作過程中有三種狀態: 

LOOKING:當前Server不知道leader是誰,正在搜尋
LEADING:當前Server即爲選舉出來的leader
FOLLOWING:leader已經選舉出來,當前Server與之同步

17.Zookeeper選主流程(basic paxos)

當leader崩潰或者leader失去大多數的follower,這時候zk進入恢復模式,恢復模式需要重新選舉出一個新的leader,讓所有的Server都恢復到一個正確的狀態。Zk的選舉算法有兩種:一種是基於basic paxos實現的,另外一種是基於fast paxos算法實現的。系統默認的選舉算法爲fast paxos。

1.選舉線程由當前Server發起選舉的線程擔任,其主要功能是對投票結果進行統計,並選出推薦的Server; 

2.選舉線程首先向所有Server發起一次詢問(包括自己); 

3.選舉線程收到回覆後,驗證是否是自己發起的詢問(驗證zxid是否一致),然後獲取對方的id(myid),並存儲到當前詢問對象列表中,最後獲取對方提議的leader相關信息(id,zxid),並將這些信息存儲到當次選舉的投票記錄表中; 

4.收到所有Server回覆以後,就計算出zxid最大的那個Server,並將這個Server相關信息設置成下一次要投票的Server; 

5.線程將當前zxid最大的Server設置爲當前Server要推薦的Leader,如果此時獲勝的Server獲得n/2 + 1的Server票數,設置當前推薦的leader爲獲勝的Server,將根據獲勝的Server相關信息設置自己的狀態,否則,繼續這個過程,直到leader被選舉出來。 通過流程分析我們可以得出:要使Leader獲得多數Server的支持,則Server總數必須是奇數2n+1,且存活的Server的數目不得少於n+1. 每個Server啓動後都會重複以上流程。在恢復模式下,如果是剛從崩潰狀態恢復的或者剛啓動的server還會從磁盤快照中恢復數據和會話信息,zk會記錄事務日誌並定期進行快照,方便在恢復時進行狀態恢復。選主的具體流程圖所示: 

<ignore_js_op> 

18.Zookeeper選主流程(fast paxos)

fast paxos流程是在選舉過程中,某Server首先向所有Server提議自己要成爲leader,當其它Server收到提議以後,解決epoch和 zxid的衝突,並接受對方的提議,然後向對方發送接受提議完成的消息,重複這個流程,最後一定能選舉出Leader。

<ignore_js_op> 

19.Zookeeper同步流程

選完Leader以後,zk就進入狀態同步過程。 

1. Leader等待server連接; 

2 .Follower連接leader,將最大的zxid發送給leader; 

3 .Leader根據follower的zxid確定同步點; 

4 .完成同步後通知follower 已經成爲uptodate狀態; 

5 .Follower收到uptodate消息後,又可以重新接受client的請求進行服務了。

<ignore_js_op> 

20.Zookeeper工作流程-Leader

1 .恢復數據; 

2 .維持與Learner的心跳,接收Learner請求並判斷Learner的請求消息類型; 

3 .Learner的消息類型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根據不同的消息類型,進行不同的處理。 

PING 消息是指Learner的心跳信息;

REQUEST消息是Follower發送的提議信息,包括寫請求及同步請求;

ACK消息是 Follower的對提議的回覆,超過半數的Follower通過,則commit該提議;

REVALIDATE消息是用來延長SESSION有效時間。

<ignore_js_op> 

21.Zookeeper工作流程-Follower

Follower主要有四個功能: 

1.向Leader發送請求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息); 

2.接收Leader消息並進行處理; 

3.接收Client的請求,如果爲寫請求,發送給Leader進行投票;

4.返回Client結果。 


Follower的消息循環處理如下幾種來自Leader的消息: 

1 .PING消息: 心跳消息; 

2 .PROPOSAL消息:Leader發起的提案,要求Follower投票; 

3 .COMMIT消息:服務器端最新一次提案的信息; 

4 .UPTODATE消息:表明同步完成; 

5 .REVALIDATE消息:根據Leader的REVALIDATE結果,關閉待revalidate的session還是允許其接受消息; 

6 .SYNC消息:返回SYNC結果到客戶端,這個消息最初由客戶端發起,用來強制得到最新的更新。

<ignore_js_op> 

好了,以上就是我對zookeeper的 理解了,以後我還會繼續爲大家更新新的技術請大家期待吧!!!

ZooKeeper是一個高可用的分佈式數據管理與系統協調框架。基於對Paxos算法的實現,使該框架保證了分佈式環境中數據的強一致性,也正是基 於這樣的特性,使得zookeeper能夠應用於很多場景。網上對zk的使用場景也有不少介紹,本文將結合作者身邊的項目例子,系統的對zk的使用場景進 行歸類介紹。 值得注意的是,zk並不是生來就爲這些場景設計,都是後來衆多開發者根據框架的特性,摸索出來的典型使用方法。因此,也非常歡迎你分享你在ZK使用上的奇 技淫巧。

        

場景類別

典型場景描述(ZK特性,使用方法)

應用中的具體使用

數據發佈與訂閱

發佈與訂閱即所謂的配置管理,顧名思義就是將數據發佈到zk節點上,供訂閱者動態獲取數據,實現配置信息的集中式管理和動態更新。例如全局的配置信息,地址列表等就非常適合使用。

1. 索引信息和集羣中機器節點狀態存放在zk的一些指定節點,供各個客戶端訂閱使用。2. 系統日誌(經過處理後的)存儲,這些日誌通常2-3天后被清除。

 

3. 應用中用到的一些配置信息集中管理,在應用啓動的時候主動來獲取一次,並且在節點上註冊一個Watcher,以後每次配置有更新,實時通知到應用,獲取最新配置信息。

4. 業務邏輯中需要用到的一些全局變量,比如一些消息中間件的消息隊列通常有個offset,這個offset存放在zk上,這樣集羣中每個發送者都能知道當前的發送進度。

5. 系統中有些信息需要動態獲取,並且還會存在人工手動去修改這個信息。以前通常是暴露出接口,例如JMX接口,有了zk後,只要將這些信息存放到zk節點上即可。

Name Service

這個主要是作爲分佈式命名服務,通過調用zk的create node api,能夠很容易創建一個全局唯一的path,這個path就可以作爲一個名稱。

 

分佈通知/協調

ZooKeeper 中特有watcher註冊與異步通知機制,能夠很好的實現分佈式環境下不同系統之間的通知與協調,實現對數據變更的實時處理。使用方法通常是不同系統都對 ZK上同一個znode進行註冊,監聽znode的變化(包括znode本身內容及子節點的),其中一個系統update了znode,那麼另一個系統能 夠收到通知,並作出相應處理。

1. 另一種心跳檢測機制:檢測系統和被檢測系統之間並不直接關聯起來,而是通過zk上某個節點關聯,大大減少系統耦合。2. 另一種系統調度模式:某系統有控制檯和推送系統兩部分組成,控制檯的職責是控制推送系統進行相應的推送工作。管理人員在控制檯作的一些操作,實際上是修改 了ZK上某些節點的狀態,而zk就把這些變化通知給他們註冊Watcher的客戶端,即推送系統,於是,作出相應的推送任務。

 

3. 另一種工作彙報模式:一些類似於任務分發系統,子任務啓動後,到zk來註冊一個臨時節點,並且定時將自己的進度進行彙報(將進度寫回這個臨時節點),這樣任務管理者就能夠實時知道任務進度。

總之,使用zookeeper來進行分佈式通知和協調能夠大大降低系統之間的耦合。

分佈式鎖

分佈式鎖,這個主要得益於ZooKeeper爲我們保證了數據的強一致性,即用戶只要完全相信每時每刻,zk集羣中任意節點(一個zk server)上的相同znode的數據是一定是相同的。鎖服務可以分爲兩類,一個是保持獨佔,另一個是控制時序。

 

所 謂保持獨佔,就是所有試圖來獲取這個鎖的客戶端,最終只有一個可以成功獲得這把鎖。通常的做法是把zk上的一個znode看作是一把鎖,通過create znode的方式來實現。所有客戶端都去創建 /distribute_lock 節點,最終成功創建的那個客戶端也即擁有了這把鎖。

控 制時序,就是所有視圖來獲取這個鎖的客戶端,最終都是會被安排執行,只是有個全局時序了。做法和上面基本類似,只是這裏 /distribute_lock 已經預先存在,客戶端在它下面創建臨時有序節點(這個可以通過節點的屬性控制:CreateMode.EPHEMERAL_SEQUENTIAL來指 定)。Zk的父節點(/distribute_lock)維持一份sequence,保證子節點創建的時序性,從而也形成了每個客戶端的全局時序。

 

集羣管理

1. 集羣機器監 控:這通常用於那種對集羣中機器狀態,機器在線率有較高要求的場景,能夠快速對集羣中機器變化作出響應。這樣的場景中,往往有一個監控系統,實時檢測集羣 機器是否存活。過去的做法通常是:監控系統通過某種手段(比如ping)定時檢測每個機器,或者每個機器自己定時向監控系統彙報“我還活着”。 這種做法可行,但是存在兩個比較明顯的問題:1. 集羣中機器有變動的時候,牽連修改的東西比較多。2. 有一定的延時。

 

利 用ZooKeeper有兩個特性,就可以實時另一種集羣機器存活性監控系統:a. 客戶端在節點 x 上註冊一個Watcher,那麼如果 x 的子節點變化了,會通知該客戶端。b. 創建EPHEMERAL類型的節點,一旦客戶端和服務器的會話結束或過期,那麼該節點就會消失。

例 如,監控系統在 /clusterServers 節點上註冊一個Watcher,以後每動態加機器,那麼就往 /clusterServers 下創建一個 EPHEMERAL類型的節點:/clusterServers/{hostname}. 這樣,監控系統就能夠實時知道機器的增減情況,至於後續處理就是監控系統的業務了。
2. Master選舉則是zookeeper中最爲經典的使用場景了。

在 分佈式環境中,相同的業務應用分佈在不同的機器上,有些業務邏輯(例如一些耗時的計算,網絡I/O處理),往往只需要讓整個集羣中的某一臺機器進行執行, 其餘機器可以共享這個結果,這樣可以大大減少重複勞動,提高性能,於是這個master選舉便是這種場景下的碰到的主要問題。

利用ZooKeeper的強一致性,能夠保證在分佈式高併發情況下節點創建的全局唯一性,即:同時有多個客戶端請求創建 /currentMaster 節點,最終一定只有一個客戶端請求能夠創建成功。

利用這個特性,就能很輕易的在分佈式環境中進行集羣選取了。

另外,這種場景演化一下,就是動態Master選舉。這就要用到 EPHEMERAL_SEQUENTIAL類型節點的特性了。

上 文中提到,所有客戶端創建請求,最終只有一個能夠創建成功。在這裏稍微變化下,就是允許所有請求都能夠創建成功,但是得有個創建順序,於是所有的請求最終 在ZK上創建結果的一種可能情況是這樣: /currentMaster/{sessionId}-1 , /currentMaster/{sessionId}-2 , /currentMaster/{sessionId}-3 ….. 每次選取序列號最小的那個機器作爲Master,如果這個機器掛了,由於他創建的節點會馬上小時,那麼之後最小的那個機器就是Master了。

1. 在搜索系統中,如果集羣中每個機器都生成一份全量索引,不僅耗時,而且不能保證彼此之間索引數據一致。因此讓集羣中的Master來進行全量索引的生成, 然後同步到集羣中其它機器。2. 另外,Master選舉的容災措施是,可以隨時進行手動指定master,就是說應用在zk在無法獲取master信息時,可以通過比如http方式,向 一個地方獲取master。

分佈式隊列

隊列方面,我目前感覺有兩種,一種是常規的先進先出隊列,另一種是要等到隊列成員聚齊之後的才統一按序執行。對於第二種先進先出隊列,和分佈式鎖服務中的控制時序場景基本原理一致,這裏不再贅述。

 

第 二種隊列其實是在FIFO隊列的基礎上作了一個增強。通常可以在 /queue 這個znode下預先建立一個/queue/num 節點,並且賦值爲n(或者直接給/queue賦值n),表示隊列大小,之後每次有隊列成員加入後,就判斷下是否已經到達隊列大小,決定是否可以開始執行 了。這種用法的典型場景是,分佈式環境中,一個大任務Task A,需要在很多子任務完成(或條件就緒)情況下才能進行。這個時候,凡是其中一個子任務完成(就緒),那麼就去 /taskList 下建立自己的臨時時序節點(CreateMode.EPHEMERAL_SEQUENTIAL),當 /taskList 發現自己下面的子節點滿足指定個數,就可以進行下一步按序進行處理了。

 

 

 

參考:   

        http://zookeeper.apache.org/
        http://blog.csdn.net/cutesource/article/details/5822459
        http://blog.csdn.net/pwlazy/article/details/8080626
        http://nileader.blog.51cto.com/1381108/795265
        http://nileader.blog.51cto.com/1381108/926753
        http://nileader.blog.51cto.com/1381108/795230
        http://netcome.iteye.com/blog/1474255

https://www.cnblogs.com/felixzh/p/5869212.html

https://blog.csdn.net/lingbo229/article/details/81052078

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章