抽象代數入門(一)

一、羣論

幺半羣(monoid)

之前看老師講的叫Abelian monoid(阿貝爾幺半羣),但是搜不到。

A monoid is a set closed under an associative binary operation and has an identity element \mathbf{I}\in \mathbf{S} such that \forall \mathbf{a}\in\mathbf{S}, \mathbf{a}\mathbf{I}=\mathbf{I}\mathbf{a}=\mathbf{a}.

Binary operation(二元運算): f(x, y) an operation between two quantities or expressions x and y.

An binary operation on a nonempty set \mathbf{A} is a map of f: \mathbf{A}\times\mathbf{A}\rightarrow\mathbf{A}.such that:

  1. f(v_1, v_2)=f(v_2, v_1), "abelian commutative";
  2. f(f(v_1, v_2), v_3) = f(v_1, f(v_2, v_3)), "abelian associative";
  3. \exists e\in\mathbf{A},s.t. f(v, e)=v, \forall v\in \mathbf{A}, e is the "identity element".同上面的 \mathbf{I}.

常用的二元運算有:addition +, substraction -, multiplication \times , division \div.

不同於羣(group),幺半羣中的元素不一定有逆。

 

 

羣(group)

也叫Abelian group.在 monoid 的基礎上多了一個條件:

Every element has an inverse: \forall g\in \mathbf{A}, \exists h\in \mathbf{A}, s.t. f(g, h)= f(h, g)= e, where e is the identity element.

例子:

Every vector space (\mathbf{V}, *) is Abelian group. 

v\in \mathbf{V}, -v\in\mathbf{V}, v + (-v)=0\in\mathbf{V}. 這裏 0 是單位元素(identity element).

二、環論(ring)

A ring in the mathmatical sense is a set \mathbf{S} together with two binary operations +, *(分表加法和乘法). 滿足以下條件:

  1. 加法結合性(additive assocativity): for all a, b, c in S, s.t. (a+b)+c = a + (b+c);
  2. 加法交換性(additive commutativity): for all a, b in S, s.t. a + b = b + a;
  3. 加法單位元(additive identity): there exists an element e in S, s.t. a + e = e + a = a, 這個 e 也可以寫成 0, 加法的單位元是0;
  4. 分配性(left and right distributivity): for all a, b, c in S, s.t. a * (b+c) = a*b + a*c,以及 (a + b) *c = a*c + b*c;
  5. 加法可逆(additive inverse): for every a in S, there exists -a in S, s.t. a + (-a) = e, e 同上, e = 0.
  6. 乘法結合性(multiplicative associativity):\forall a,b,c\in \mathbf{S}, s.t. a*(b*c)=(a*b)*c。滿足該性質的環也叫 associative ring.
  7. 乘法交換性(mulitplicative commutativity): \for a,b \in \mathbf{S}, s.t. a*b = b*a. (a ring satisfying this property is termed a commutative ring).
  8. 乘法單位元(multiplicative identity): There exists an element 1\in\mathbf{S}, s.t. 1*a=a*1,\forall a\in \mathbf{S}.(a ring satisfying this property is termed a unit ring, or a ring with identity).
  9. 乘法可逆(multiplicative inverse): \forall a\in\mathbf{S}, a \not= 0, \exists a^{-1}\in\mathbf{S}, s.t. a * a^{-1}=a^{-1}*a=1. Where 1 is the identity element.

定義一個環至少要滿足前五個條件,但一般會加上第六個條件變成associative ring. 沒有滿足第六個條件的叫nonassociative ring.

滿足所有條件的就稱爲域(field).不滿足 7 乘法交換的環叫做 division algebra(可除代數)也叫 skew field(非交換域).

 

 

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章