抽象代數入門(二)

Field(域)

Dfn: ”Field“ is a commutative ring (\mathbf{R}, +, .), s.t. every non-zero element has inverse.

這個交換環對於乘法和加法都滿足交換性,而且對於所有非零元素都存在逆。

  1. 對加法逆,即(\mathbf{R}, +), \forall v\in \mathbf{R}, v\not=0, \exists u\in\mathbf{R}, s.t. \quad v + u=0;
  2. 對乘法逆,即(\mathbf{R}, *),\forall v\in \mathbf{R}, v\not=0, \exists u\in\mathbf{R}, s.t. \quad v*u=1.

這兩個都滿足,u是對應元素的逆。加法的逆寫成-v, 乘法的逆寫成v^{-1}都是可以的,都是符號表示。

Polynomials over a field

Dfn: Let (\mathbb{F}, +, *) be a field. A polynomial over a field \mathbb{F} is an equation of the form :f(x) = a_0 + a_1x + a_2 x^2 + a_3 x^3 + ... + a_m x^m, where the coefficients a_0, a_1, ..., a_m\in \mathbb{F}. The set of all polynomials over a field \mathbb{F} is denoted \mathbb{F}[x].

 

ideal(理想)

Dfn: "Idela" of \mathbb{F}[z] is a subset \mathbf{T} of \mathbb{F}[z] s.t. it is closed under addition and closed under multiplication by any element of \mathbb{F}[z].

  1. closed under addition: \forall u_1, u_2\in \mathbf{T}, s.t. \quad u_1+u_2\in\mathbf{T}
  2. closed under multiplication:\exists r\in \mathbb{F}[z], \forall u\in\mathbf{T}, s.t. \quad r*u\in\mathbf{T}

i.e. the set of even integers is an ideal in the ring of integers \mathbf{Z}. Given an ideal \mathbf{T}, it is possible to define a quotient ring \mathbb{F}[z]/\mathbf{T}.

i.e. \mathbf{T}=\left\{p\in\mathbb{F}[z]|p=(z^2+1)q, \forall q\in\mathbb{F}[z] \right\}. is ideal.

  1. \left.\begin{matrix} p_1=(z^2+1)q_1 \\ p_2=(z^2+1)q_2 \end{matrix}\right\},\quad p_1+p_2=(z^2+1)(q_1+q_2)\in T,\ where\ q_1,q_2\in\mathbb{F}[z]
  2. p\in\mathbf{T},\ h\in\mathbb{F}[z],then\ p=(z^2+1)q, where \ q\in\mathbb{F}[z], hp=(z^2+1)hq\in\mathbf{T}. proved

Module(模)

Dfn: a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field.

環上的一個模,域上的一個向量空間。在模中的係數是來自於環的,而向量空間中的係數是來自於域的。(域的定義更爲嚴格,比之於環),係數的尋去空間更爲通用,因此說模是向量空間的泛化。

Integral Domain(整域)

Dfn: 也叫整環,指的是不含零因子(divisor)的交換環。環中乘法的單位元通常和加法的單位元不同,整環是整數環的抽象化。關於交換環(commutative ring)的定義可以參看抽象代數入門(一)。

  1. multiplicative identity element: a*e=e*a=1, \forall a\in\mathbf{R}, e\ is\ the\ identity\ element.
  2. No divisors of 0, \forall (a, b) \in\mathbf{R}, s.t. a*b=0\Rightarrow (a=0\cup b=0) or \forall (a, b, c) \in\mathbf{R}, if\ a*c=b*c\cup c\not= 0\Rightarrow (a=b)

i.e. (\mathbb{Z}, +, *) is an intergral domain.

Principal Ideal Ring(主理想環)

Dfn: 每個理想都可以由單個元素生成的環,寫成left ideal xR or right ideal Rx 的形式,其中 x 是 環 R 中的一個元素。

Dfn: 如果交換的理想環R 同時也是整環,那麼稱之爲主理想域(principal ideal domain), 簡寫成 P.I.D.

i.e. 整數環是主理想域,Eucildean Ring 一般都是。

Polynomial Ring(多項式環)

多項式環是對初等數學中多項式的泛化,通常表示成 \mathbf{R}[X]

Dfn: The polynomial ring,  \mathbf{R}[X], in X over \mathbf{R} is defined as:

p(X)= a_0 + a_1X+a_2X^2+...+a_mX^ma_i is the coefficient of X^iX 只是一個符號,X^i 稱爲 powers of X.

The ideal generated by a finite set of polynomials \left\{p_1, p_2,..., p_m \right\}\in\mathbb{F}[x] defined as:

\left\(p_1, p_2, ..., p_m\right\):=\left\{q_1p_1+q_2p_2+...+q_mp_m|\forall p_i\in\mathbb{F}[x] \right\}

 

Monoic Polynomial(單多項式)

Dfn: a single-variable polynomial(univariate polynomial) in which the leading coefficient is equal to 1. Which can be written in the form:

p(x)=x_n+a_{n-1}x_{n-1} + a_{n-2}x_{n-2}+...+a_1x_1+a_0

 

Unique Factorization Domain(唯一分解環)

Dfn: 唯一分解環是一個整環(integral domain), 其元素都可以表示成有限個不可約元素乘積的形式,並在允許重排下唯一,相當於滿足基本算術定理的整環。簡寫爲UFD.

A integral domain R is said to be a unique factorization domain if it has the following factorization properties:

  1. Every nonzero nonunit element r\in\mathbf{R} can be written as a product of a finite number of irreducible elements r\in p_1p_2...p_s.
  2. The factorization into irreducible elements is unique in the sense that if r= p_1p_2...p_s and r= q_1q_2...q_t are two factorizations. Then s=t and after a suitable reindexing of the factor, p_i=q_i

Every principal ideal domain R is a unique factorization domain.

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章