知識圖譜整理之Java基礎ThreadPoolExecutor

ThreadPoolExecutor介紹

ThreadPoolExecutor是一個管理線程的一個類,可以有效的複用和控制線程。之前比較好奇,像這樣的池化技術是如何實現的,今天我們就來一起探究下。本文是在JDK8的源碼下進行閱讀的,由於是自己總結,所以太過基礎的東西不做贅述。

ThreadPoolExecutor源碼解析

構造方法

我們先從構造方法開始入手來了解這個類,初學者也都是從瞭解構造方法中參數含義來開始瞭解的。

 public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
  • 我們可能知道阿里規範的話,讓我們直接自己使用構造函數定義ThreadPoolExecutor,目的就是清晰展示線程池的參數,防止線程池出現問題,比如內存溢出。
  • corePoolSize代表核心線程數
  • maximumPoolSize代表最大線程數
  • keepAliveTime代表空閒線程最大存活時間
  • unit代表時間單位
  • workQueue代表任務存儲隊列
  • threadFactory代表線程工廠
  • handler代表任務拒絕策略

成員變量ctl介紹

先來看下源碼:

 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

這裏截取一篇文章的介紹:

COUNT_BITS表示ctl變量中表示有效線程數量的位數,這裏COUNT_BITS=29;
CAPACITY表示最大有效線程數,根據位運算得出COUNT_MASK=11111111111111111111111111111,這算成十進制大約是5億,在設計之初就已經想到不會開啓超過5億條線程,所以完全夠用了;
線程池狀態的位運算得到以下值:
RUNNING:高三位值111
SHUTDOWN:高三位值000
STOP:高三位值001
TIDYING:高三位值010
TERMINATED:高三位值011
在多線程的環境下,運行狀態和有效線程數量往往需要保證統一,不能出現一個改而另一個沒有改的情況,如果將他們放在同一個AtomicInteger中,利用AtomicInteger的原子操作,就可以保證這兩個值始終是統一的。

  • 這裏有點疑惑的可能是runStateOf、workerCountOf三個方法
  • runStateOf其實是截取高三位,代表線程池狀態
  • workerCountOf是低29位,代表線程個數

execute和submit方法源碼

介紹完一些參數後,我們來看看是如何運行的,這裏先看下submit方法源碼:

    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }
  • 這裏就是比對execute方法會有值返回,我們不做深究,直接來看execute方法源碼
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }
  • 運行邏輯是,如果傳入線程爲null,直接拋出異常,之後再判斷工作線程是否小於corePoolSize,然後就是addWorker方法,關於這個方法源碼我們之後解析
  • 如果大於等於corePoolSize,就會在workQueue也就是構造函數中傳入的阻塞隊列中添加,如果成功,下面一些判斷條件主要是防禦性檢查
  • 最後如果沒添加進workQueue中,會再次嘗試addWorker,不過這是針對的是maximumPoolSize,不行也會直接拒絕
  • 這裏涉及到的addWorker、reject源碼我們稍後來看

reject方法源碼

    final void reject(Runnable command) {
        handler.rejectedExecution(command, this);
    }
  • 這裏比較簡單,就是調用拒絕策略,不做過多分析

addWorker方法源碼

private boolean addWorker(Runnable firstTask, boolean core) {
		//<1>
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }
		//<2>
        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
  • 第<1>塊內容,主要是針對ctl加一,來代表工作線程數量
  • 其中的core參數是來決定是否是核心線程
  • 第<2>塊內容是真實添加Worker,首先會創建Worker,其次拿出worker中的Thread,注意,這裏的Thread不是我們初始化Worker中的firstTask,具體我們等下來看,然後會把創建的worker加到workers中,最後啓動線程
  • 這裏會有疑問,那線程池是如何控制的呢?答案我們進入Worker來尋找

Worker內部類源碼

這裏我們只截取部分源碼幫助我們理解即可,若後續有展開,我們繼續分析:

private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
   
        }
        ...
   }
  • 這裏看到我們運行的線程是通過傳入的threadFactory來創建的
  • 運行這個線程,我們來看下run方法實際是跑了runWorker方法,我們接下來看下源碼

runWorker方法源碼

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }
  • 這裏主要的邏輯就是while不斷循環,然後通過getTask方法去取相應任務,持續運行,如果取到的task爲null,則會結束線程。注意這裏的task在調用run方法之後會直接設置爲null,代表清除,那麼重要的就是getTask是怎麼控制任務的了,我們來看下

getTask方法源碼

private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }
  • 前面一堆,是用來檢查線程池狀態的,之後有一段很關鍵的代碼,是來控制核心線程和其它線程區別的boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;,這段代碼的意思是如果大於核心線程,則爲true,具體作用我們往下看
  • Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take();中我們可以看到這裏我們是通過阻塞隊列來分別的,如果是核心線程,我們會通過阻塞隊列的task方法阻塞着,如果不是則通過poll定時,超時空閒時間沒有取到任務則代表是空閒的,返回timedOut = true;
  • 這時再看上面一段代碼邏輯((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty()))會返回true,則方法最終會返回null,最終也會結束外層的線程。

個人總結

源碼看的差不多了,到了總結環節,畢竟不是爲了看源碼而看源碼,那麼ThreadPoolExecutor是如何協同運作的呢?

個人認爲主要還是通過Worker這個內部類來進行協作的,我們可以理解線程池執行的線程內存,其實可以理解爲傳入了一個執行方法而已,並且都有一個實現類,這時其實傳入的線程實現類本身的線程意義就沒有了,其實就是一個方法,線程的話是通過線程池的內部屬性。然後具體的管控任務,空閒線程的回收,是通過阻塞隊列的take和poll超時方法來控制的。大概線程池遇到對的問題就這些,如果有大家有其他問題,也歡迎交流。

今日知識圖譜:
知識圖譜

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章